186,225 research outputs found
Cooperative emission of a pulse train in an optically thick scattering medium
An optically thick cold atomic cloud emits a coherent flash of light in the
forward direction when the phase of an incident probe field is abruptly
changed. Because of cooperativity, the duration of this phenomena can be much
shorter than the excited lifetime of a single atom. Repeating periodically the
abrupt phase jump, we generate a train of pulses with short repetition time,
high intensity contrast and high efficiency. In this regime, the emission is
fully governed by cooperativity even if the cloud is dilute.Comment: 5 pages, 3 figure
A Lee-Yang--inspired functional with a density--dependent neutron-neutron scattering length
Inspired by the low--density Lee-Yang expansion for the energy of a dilute
Fermi gas of density and momentum , we introduce here a
Skyrme--type functional that contains only -wave terms and provides, at the
mean--field level, (i) a satisfactory equation of state for neutron matter from
extremely low densities up to densities close to the equilibrium point, and
(ii) a good--quality equation of state for symmetric matter at density scales
around the saturation point. This is achieved by using a density--dependent
neutron-neutron scattering length ) which satisfies the low--density
limit (for Fermi momenta going to zero) and has a density dependence tuned in
such a way that the low--density constraint is satisfied
at all density scales.Comment: 5 figure
Many-particle theory of nuclear systems with application to neutron star matter
The research is reported concerning energy-density relation for the normal state of neutron star matter, and the effects of superfluidity and polarization on neutron star matter. Considering constraints on variation, and the theory of quantum fluids, three methods for calculating the energy-density range are presented. The effects of polarization on neutron star structure, and polarization effects on condensation and superfluid-state energy are discussed
From dilute matter to the equilibrium point in the energy--density--functional theory
Due to the large value of the scattering length in nuclear systems, standard
density--functional theories based on effective interactions usually fail to
reproduce the nuclear Fermi liquid behavior both at very low densities and
close to equilibrium. Guided on one side by the success of the Skyrme density
functional and, on the other side, by resummation techniques used in Effective
Field Theories for systems with large scattering lengths, a new energy--density
functional is proposed. This functional, adjusted on microscopic calculations,
reproduces the nuclear equations of state of neutron and symmetric matter at
various densities. Furthermore, it provides reasonable saturation properties as
well as an appropriate density dependence for the symmetry energy.Comment: 4 figures, 2 table
350 Micron Observations of Ultraluminous Infrared Galaxies at Intermediate Redshifts
We present 350micron observations of 36 ultraluminous infrared galaxies
(ULIRGs) at intermediate redshifts (0.089 <= z <= 0.926) using the
Submillimeter High Angular Resolution Camera II (SHARC-II) on the Caltech
Submillimeter Observatory (CSO). In total, 28 sources are detected at S/N >= 3,
providing the first flux measurements longward of 100micron for a statistically
significant sample of ULIRGs in the redshift range of 0.1 < z < 1.0. Combining
our 350micron flux measurements with the existing IRAS 60 and 100micron data,
we fit a single-temperature model to the spectral energy distribution (SED),
and thereby estimate dust temperatures and far-IR luminosities. Assuming an
emissivity index of beta = 1.5, we find a median dust temperature and far-IR
luminosity of Td = 42.8+-7.1K and log(Lfir/Lsolar) = 12.2+-0.5, respectively.
The far-IR/radio correlation observed in local star-forming galaxies is found
to hold for ULIRGs in the redshift range 0.1 < z < 0.5, suggesting that the
dust in these sources is predominantly heated by starbursts. We compare the
far-IR luminosities and dust temperatures derived for dusty galaxy samples at
low and high redshifts with our sample of ULIRGs at intermediate redshift. A
general Lfir-Td relation is observed, albeit with significant scatter, due to
differing selection effects and variations in dust mass and grain properties.
The relatively high dust temperatures observed for our sample compared to that
of high-z submillimeter-selected starbursts with similar far-IR luminosities
suggest that the dominant star formation in ULIRGs at moderate redshifts takes
place on smaller spatial scales than at higher redshifts.Comment: (24 pages in preprint format, 1 table, 7 figures, accepted for
publication in ApJ
Many-particle theory of nuclear systems with application to neutron star matter
The energy-density relation was calculated for pure neutron matter in the density range relevant for neutron stars, using four different hard-core potentials. Calculations are also presented of the properties of the superfluid state of the neutron component, along with the superconducting state of the proton component and the effects of polarization in neutron star matter
- …