133,913 research outputs found

    Field-ionization threshold and its induced ionization-window phenomenon for Rydberg atoms in a short single-cycle pulse

    Get PDF
    We study the field-ionization threshold behavior when a Rydberg atom is ionized by a short single-cycle pulse field. Both hydrogen and sodium atoms are considered. The required threshold field amplitude is found to scale \emph{inversely} with the binding energy when the pulse duration becomes shorter than the classical Rydberg period, and, thus, more weakly bound electrons require larger fields for ionization. This threshold scaling behavior is confirmed by both 3D classical trajectory Monte Carlo simulations and numerically solving the time-dependent Schr\"{o}dinger equation. More surprisingly, the same scaling behavior in the short pulse limit is also followed by the ionization thresholds for much lower bound states, including the hydrogen ground state. An empirical formula is obtained from a simple model, and the dominant ionization mechanism is identified as a nonzero spatial displacement of the electron. This displacement ionization should be another important mechanism beyond the tunneling ionization and the multiphoton ionization. In addition, an "ionization window" is shown to exist for the ionization of Rydberg states, which may have potential applications to selectively modify and control the Rydberg-state population of atoms and molecules

    Temperature dependence of electron-phonon interactions in vanadium

    Get PDF
    First-principles calculations were used to study the Fermi surface of body-centered cubic vanadium at elevated temperatures. Supercell calculations accounted for effects of thermal atom displacements on band energies, and band unfolding was used to project the spectral weight of the electron states into the Brillouin zone of a standard bcc unit cell. An electronic topological transition (ETT, or Lifshitz transition) occurred near the Γ point with increasing temperature, but the large thermal smearings from the atomic disorder and the Fermi-Dirac distribution reduced the effect of this ETT on the electron-phonon interactions. The phonon dispersions showed thermal stiffening of their Kohn anomalies near the Γ point and of the longitudinal N phonon mode. In general the effects of the ETT were overcome by the thermal smearing of the Fermi surface that reduces the spanning vector densities for anomalous phonon modes

    GAPS IN THE HEISENBERG-ISING MODEL

    Full text link
    We report on the closing of gaps in the ground state of the critical Heisenberg-Ising chain at momentum π\pi. For half-filling, the gap closes at special values of the anisotropy Δ=cos(π/Q)\Delta= \cos(\pi/Q), QQ integer. We explain this behavior with the help of the Bethe Ansatz and show that the gap scales as a power of the system size with variable exponent depending on Δ\Delta. We use a finite-size analysis to calculate this exponent in the critical region, supplemented by perturbation theory at Δ0\Delta\sim 0. For rational 1/r1/r fillings, the gap is shown to be closed for {\em all} values of Δ\Delta and the corresponding perturbation expansion in Δ\Delta shows a remarkable cancellation of various diagrams.Comment: 12 RevTeX pages + 4 figures upon reques

    Spinless Calogero-Sutherland model with twisted boundary condition

    Full text link
    In this work, the spinless Calogero-Sutherland model with twisted boundary condition is studied. The ground state wavefunctions, the ground state energies, the full energy spectrum are provided in details.Comment: preprint of ETH-L, appearing in recent PR

    Tunneling, dissipation, and superfluid transition in quantum Hall bilayers

    Full text link
    We study bilayer quantum Hall systems at total Landau level filling factor ν=1\nu=1 in the presence of interlayer tunneling and coupling to a dissipative normal fluid. Describing the dynamics of the interlayer phase by an effective quantum dissipative XY model, we show that there exists a critical dissipation σc\sigma_c set by the conductance of the normal fluid. For σ>σc\sigma > \sigma_c, interlayer tunnel splitting drives the system to a ν=1\nu=1 quantum Hall state. For σ<σc\sigma <\sigma_c, interlayer tunneling is irrelevant at low temperatures, the system exhibits a superfluid transition to a collective quantum Hall state supported by spontaneous interlayer phase coherence. The resulting phase structure and the behavior of the in-plane and tunneling currents are studied in connection to experiments.Comment: 4 RevTex pages, revised version, to appear in Phys. Rev. Let
    corecore