3 research outputs found

    Direct-Current Generator Based on Dynamic Water-Semiconductor Junction with Polarized Water as Moving Dielectric Medium

    Full text link
    There is a rising prospective in harvesting energy from water droplets, as microscale energy is required for the distributed sensors in the interconnected human society. However, achieving a sustainable direct-current generating device from water flow is rarely reported, and the quantum polarization principle of the water molecular remains uncovered. Herein, we propose a dynamic water-semiconductor junction with moving water sandwiched between two semiconductors as a moving dielectric medium, which outputs a sustainable direct-current voltage of 0.3 V and current of 0.64 uA with low internal resistance of 390 kilohm. The sustainable direct-current electricity is originating from the dynamic water polarization process in water-semiconductor junction, in which water molecules are continuously polarized and depolarized driven by the mechanical force and Fermi level difference, during the movement of the water on silicon. We further demonstrated an encapsulated portable power-generating device with simple structure and continuous direct-current voltage, which exhibits its promising potential application in the field of wearable electronic generators

    A Variable Step Crow Search Algorithm and Its Application in Function Problems

    No full text
    Optimization algorithms are popular to solve different problems in many fields, and are inspired by natural principles, animal living habits, plant pollinations, chemistry principles, and physic principles. Optimization algorithm performances will directly impact on solving accuracy. The Crow Search Algorithm (CSA) is a simple and efficient algorithm inspired by the natural behaviors of crows. However, the flight length of CSA is a fixed value, which makes the algorithm fall into the local optimum, severely limiting the algorithm solving ability. To solve this problem, this paper proposes a Variable Step Crow Search Algorithm (VSCSA). The proposed algorithm uses the cosine function to enhance CSA searching abilities, which greatly improves both the solution quality of the population and the convergence speed. In the update phase, the VSCSA increases population diversities and enhances the global searching ability of the basic CSA. The experiment used 14 test functions,2017 CEC functions, and engineering application problems to compare VSCSA with different algorithms. The experiment results showed that VSCSA performs better in fitness values, iteration curves, box plots, searching paths, and the Wilcoxon test results, which indicates that VSCSA has strong competitiveness and sufficient superiority. The VSCSA has outstanding performances in various test functions and the searching accuracy has been greatly improved

    Mechanical Motion Tuned Carrier Transport Characteristic of Dynamic Diode

    No full text
    Abstract Since the invention of the dynamic diode, its physical properties and potential applications have attracted wide attention. Lots of attempts are made to harvest the rebounding current and voltage of the dynamic diode. However, the underlying physical mechanism of its carrier transport characteristic is rarely explored carefully. Here, the electrical transport properties of the dynamic diode are systematically investigated with a mechanical motionā€tuned method, where the dynamic currentā€voltage (Iā€V) curve shows a gentler growth trend compared to the static curve. The rebounding current increases with motion velocity and contact force, resulting in a reduced current with the same bias voltage and an oscillation current with a changing velocity and force. This study shows a physical picture of adjusting microscopic carrier motion with macroscopic mechanical motion, which provides strong theoretical support for designing dynamic diode devices with better performance in the future
    corecore