491 research outputs found

    Hydatidosis and Intervention Strategies

    Get PDF
    Human echinococcosis is a zoonotic infection caused by larval forms (metacestodes) of tapeworms of the genus Echinococcus. Among the recognised species, Echinococcus granulosus and E. multilocularis are of considerable medical importance, causing cystic and alveolar echinococcosis (AE and CE), respectively. The factors of immunology, host-genetic inherits, and Echinococcus genetic-diversity and adaption clearly influence infectious establishment and disease progression. However, subtle mechanisms between host and parasite interactions/relationships are still open to study for answers. Despite the global burden, echinococcosis remains a neglected zoonosis. The importance of environmental factors influencing the transmission intensity and distribution of Echinococcus species is increasingly being recognised. The intervention strategies for this public health threat have integrated host immune-genetic research, parasite adaptation, and genetic diversity analysis, as well as the transmission dynamic investigations; the limitations of current control programmes are clearly presented in this study that hampers the elimination of Echinococcus species worldwide. Continuous efforts by multidiscipline researches are needed

    Defensins in Ulcerative Colitis

    Get PDF

    Current Research Advance on Echinococcosis

    Get PDF
    Echinococcosis is caused by infection with larva (metacestode) of the tapeworms of the genus Echinococcus. Within genus Echinococcus, two species are known as public health concern worldwide: Echinococcus guanulosus causing cystic echinococcosis (CE) and Echinococcus multilocularis causing alveolar echinococcosis (AE). The co-evaluation due to the interaction between parasites and their hosts has been well known to be able to allow tolerating to maintain parasitism as long as possible. With many research advanced findings, scientists have been much interested in using either those molecules from parasites producing due to invading and surviving or those cytokines from hosts responding due to defenses to carry out immunotherapeutic practice that is not only against parasitic infection but also for cancer or other immunological related disorders. Taken advance of knowledge on Echinococcus genome research outcomes, recent attentions regarding the discoveries of targeting antiparasitic drug and/or vaccine were extensively discussed in this review

    On-the-fly machine learning for parametrization of the effective Hamiltonian

    Full text link
    The first-principles-based effective Hamiltonian is widely used to predict and simulate the properties of ferroelectrics and relaxor ferroelectrics. However, the parametrization method of the effective Hamiltonian is complicated and hardly can resolve the systems with complex interactions and/or complex components. Here, we developed an on-the-fly machine learning approach to parametrize the effective Hamiltonian based on Bayesian linear regression. The parametrization is completed in molecular dynamics simulations, with the energy, forces and stress predicted at each step along with their uncertainties. First-principles calculations are executed when the uncertainties are large to retrain the parameters. This approach provides a universal and automatic way to compute the effective Hamiltonian parameters for any considered systems including complex systems which previous methods can not handle. BaTiO3 and Pb(Sc,Ta)O3 are taken as examples to show the accurateness of this approach comparing with conventional first-principles parametrization method.Comment: 11 pages, 2 figure

    Experimental demonstrations of high-Q superconducting coplanar waveguide resonators

    Get PDF
    We designed and successfully fabricated an absorption-type of superconducting coplanar waveguide (CPW) resonators. The resonators are made from a Niobium film (about 160 nm thick) on a high-resistance Si substrate, and each resonator is fabricated as a meandered quarter-wavelength transmission line (one end shorts to the ground and another end is capacitively coupled to a through feedline). With a vector network analyzer we measured the transmissions of the applied microwave through the resonators at ultra-low temperature (e.g., at 20 mK), and found that their loaded quality factors are significantly high, i.e., up to 10^6. With the temperature increases slowly from the base temperature (i.e., 20 mK), we observed the resonance frequencies of the resonators are blue shifted and the quality factors are lowered slightly. In principle, this type of CPW-device can integrate a series of resonators with a common feedline, making it a promising candidate of either the data bus for coupling the distant solid-state qubits or the sensitive detector of single photons.Comment: Accepted by Chinese Science Bulleti

    TsDAF-21/Hsp90 is expressed in all examined stages of Trichinella spiralis

    Get PDF
    Trichinella is an important parasitic nematode of animals worldwide. Heat shock proteins are ubiquitous in nature and allow organisms to quickly respond to environmental stress. A portion of the Tsdaf-21 gene, a Caenorhabditis elegans daf-21 homologue encoding heat-shock protein 90 (Hsp90) was cloned from Trichinella spiralis. The partial nucleotide sequence resided near the 5′-end of the gene and encoded a polypeptide of 254 amino acid residues harboring a HATPase-c superfamily domain and Hsp90 protein domain. Phylogenetic analysis revealed that Tsdaf-21 is highly conserved and formed a monophyletic clade with other nematodes. The partial Tsdaf-21 transcript was subcloned and expressed for antibody production. Results using PCR primers specific for the Tsdaf-21 transcript, and mouse polyclonal antisera specific for the recombinant protein showed that both the RNA transcript and the corresponding protein were ubiquitously and consistently expressed in newborn larvae, muscle larvae and both male and female adult worms in the absence of any external stress or stimulation
    corecore