2,761 research outputs found

    Click-aware purchase prediction with push at the top

    Full text link
    Eliciting user preferences from purchase records for performing purchase prediction is challenging because negative feedback is not explicitly observed, and because treating all non-purchased items equally as negative feedback is unrealistic. Therefore, in this study, we present a framework that leverages the past click records of users to compensate for the missing user-item interactions of purchase records, i.e., non-purchased items. We begin by formulating various model assumptions, each one assuming a different order of user preferences among purchased, clicked-but-not-purchased, and non-clicked items, to study the usefulness of leveraging click records. We implement the model assumptions using the Bayesian personalized ranking model, which maximizes the area under the curve for bipartite ranking. However, we argue that using click records for bipartite ranking needs a meticulously designed model because of the relative unreliableness of click records compared with that of purchase records. Therefore, we ultimately propose a novel learning-to-rank method, called P3Stop, for performing purchase prediction. The proposed model is customized to be robust to relatively unreliable click records by particularly focusing on the accuracy of top-ranked items. Experimental results on two real-world e-commerce datasets demonstrate that P3STop considerably outperforms the state-of-the-art implicit-feedback-based recommendation methods, especially for top-ranked items.Comment: For the final published journal version, see https://doi.org/10.1016/j.ins.2020.02.06

    Metabolic dynamics and physiological adaptation of Panax ginseng during development

    Get PDF
    Being an essential Oriental medicinal plant, ginseng (Panax ginseng Meyer) is a slow-growing perennial herb-accumulating pharmaceutically active metabolites such as ginsenosides in roots during growth. However, little is known about how ginseng plants survive in the harsh environments such as winter cold and summer heat for a longer period and accumulates those active metabolites as the plant grows. To understand the metabolic kinetics in both source and sink organs such as leaves and roots of ginseng plant, respectively, and to assess the changes in ginsenosides biosynthesis during ginseng growth, we investigated the metabolic profiles from leaves and roots of 1-, 4-, and 6-year-old field-grown ginseng plants. Using an integrated non-targeted metabolomic approach, we identified in total 348 primary and secondary metabolites, which provided us for the first time a global metabolomic assessment of ginseng during growth, and morphogenesis. Strikingly, the osmoprotectants and oxidized chemicals were highly accumulated in 4- and 6-year-old ginseng leaves suggested that ginseng develop a wide range of metabolic strategies to adapt unfavorable conditions as they mature. In 6-year-old plants, ginsenosides were decreased in leaves but increased in roots up to 1.2- to sixfold, supporting the view that there is a long-distance transport of ginsenosides from leaves to roots as ginseng plants mature. Our findings provide insights into the metabolic kinetics during the development of ginseng plant and this could complement the pharmacological importance of ginseng and its compounds according to their age

    Nanostructured, Self-Assembling Peptide K5 Blocks TNF-α and PGE2 Production by Suppression of the AP-1/p38 Pathway

    Get PDF
    Nanostructured, self-assembling peptides hold promise for a variety of regenerative medical applications such as 3D cell culture systems, accelerated wound healing, and nerve repair. The aim of this study was to determine whether the self-assembling peptide K5 can be applied as a carrier of anti-inflammatory drugs. First, we examined whether the K5 self-assembling peptide itself can modulate various cellular inflammatory responses. We found that peptide K5 significantly suppressed the release of tumor-necrosis-factor- (TNF-) α and prostaglandin E2 (PGE2) from RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS). Similarly, there was inhibition of cyclooxygenase- (COX-) 2 mRNA expression assessed by real-time PCR, indicating that the inhibition is at the transcriptional level. In agreement with this finding, peptide K5 suppressed the translocation of the transcription factors activator protein (AP-1) and c-Jun and inhibited upstream inflammatory effectors including mitogen activated protein kinase (MAPK), p38, and mitogen-activated protein kinase kinase 3/6 (MKK 3/6). Whether this peptide exerts its effects via a transmembrane or cytoplasmic receptor is not clear. However, our data strongly suggest that the nanostructured, self-assembling peptide K5 may possess significant anti-inflammatory activity via suppression of the p38/AP-1 pathway

    Microfluidic assisted synthesis of silver nanoparticle–chitosan composite microparticles for antibacterial applications

    Get PDF
    AbstractSilver nanoparticle (Ag NP)-loaded chitosan composites have numerous biomedical applications; however, fabricating uniform composite microparticles remains challenging. This paper presents a novel microfluidic approach for single-step and in situ synthesis of Ag NP-loaded chitosan microparticles. This proposed approach enables obtaining uniform and monodisperse Ag NP-loaded chitosan microparticles measuring several hundred micrometers. In addition, the diameter of the composites can be tuned by adjusting the flow on the microfluidic chip. The composite particles containing Ag NPs were characterized using UV–vis spectra and scanning electron microscopy-energy dispersive X-ray spectrometry data. The characteristic peaks of Ag NPs in the UV–vis spectra and the element mapping or pattern revealed the formation of nanosized silver particles. The results of antibacterial tests indicated that both chitosan and composite particles showed antibacterial ability, and Ag NPs could enhance the inhibition rate and exhibited dose-dependent antibacterial ability. Because of the properties of Ag NPs and chitosan, the synthesized composite microparticles can be used in several future potential applications, such as bactericidal agents for water disinfection, antipathogens, and surface plasma resonance enhancers

    The patatin-containing phospholipase A pPLAIIα modulates oxylipin formation and water loss in Arabidopsis thaliana

    Get PDF
    The patatin-related phospholipase A (pPLA) hydrolyzes membrane glycerolipids to produce monoacyl compounds and free fatty acids. Phospholipids are cleaved by pPLAIIα at the sn-1 and sn-2 positions, and galactolipids, including those containing oxophytodienoic acids, can also serve as substrates. Ablation of pPLAIIα decreased lysophosphatidylcholine and lysophosphatidylethanolamine levels, but increased free linolenic acid. pPLAIIα-deficient plants displayed a higher level of jasmonic acid and methyl jasmonate, as well as the oxylipin-biosynthetic intermediates 13-hydroperoxylinolenic acid and 12-oxophytodienoic acid than wild-type plants. The expression of genes involved in oxylipin production was also higher in the pPLAIIα-deficient mutant than in wild-type plants. The mutant plants lost water faster than wild type plants did. The stomata of wild type and mutant plants responded similarly to abscisic acid. In response to desiccation, the mutant and wild type leaves produced abscisic acid at the same rate, but after 4 h of desiccation, the jasmonic acid level was much higher in mutant than wild-type leaves. These results indicate that pPLAIIα negatively regulates oxylipin production and suggest a role in the removal of oxidatively modified fatty acids from membranes

    Investigation on Health Effects of an Abandoned Metal Mine

    Get PDF
    To investigate potential health risks associated with exposure to metals from an abandoned metal mine, the authors studied people living near an abandoned mine (n=102) and control groups (n=149). Levels of cadmium, copper, arsenic, lead, and zinc were measured in the air, soil, drinking water, and agricultural products. To assess individual exposure, biomarkers of each metal in blood and urine were measured. β2-microglobulin, α1-microglobulin, and N-acetyl-beta-glucosaminidase and bone mineral density were measured. Surface soil in the study area showed 2-10 times higher levels of metals compared to that of the control area. Metal concentrations in the groundwater and air did not show any notable differences between groups. Mean concentrations of cadmium and copper in rice and barley from the study area were significantly higher than those of the control area (p<0.05). Geometric means of blood and urine cadmium in the study area were 2.9 µg/L and 1.5 µg/g Cr, respectively, significantly higher than those in the control area (p<0.05). There were no differences in the levels of urinary markers of early kidney dysfunction and bone mineral density. The authors conclude that the residents near the abandoned mine were exposed to higher levels of metals through various routes

    Estrogen receptor-α gene haplotype is associated with primary knee osteoarthritis in Korean population

    Get PDF
    Estrogen and estrogen receptors (ERs) are known to play important roles in the pathophysiology of osteoarthritis (OA). To investigate ER-α gene polymorphisms for its associations with primary knee OA, we conducted a case–control association study in patients with primary knee OA (n = 151) and healthy individuals (n = 397) in the Korean population. Haplotyping analysis was used to determine the relationship between three polymorphisms in the ER-α gene (intron 1 T/C, intron 1 A/G and exon 8 G/A) and primary knee OA. Genotypes of the ER-α gene polymorphism were determined by PCR followed by restriction enzyme digestion (PvuII for intron 1 T/C, XbaI for intron 1 A/G, and BtgI for exon 8 G/A polymorphism). There was no significant difference between primary knee OA patients and healthy control individuals in the distribution of any of the genotypes evaluated. However, we found that the allele frequency for the exon 8 G/A BtgI polymorphism (codon 594) was significantly different between primary knee OA patients and control individuals (odds ratio = 1.38, 95% confidence interval = 1.01–1.88; P = 0.044). In haplotype frequency estimation analysis, there was a significant difference between primary knee OA patients and control individuals (degrees of freedom = 7, χ(2 )= 21.48; P = 0.003). Although the number OA patients studied is small, the present study shows that ER-α gene haplotype may be associated with primary knee OA, and genetic variations in the ER-α gene may be involved in OA

    Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    Full text link
    Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases

    Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock

    Get PDF
    Mammalian 2-Cys peroxiredoxin II (Prx II) is a cellular peroxidase that eliminates endogenous H2O2. The involvement of Prx II in the regulation of lipopolysaccharide (LPS) signaling is poorly understood. In this report, we show that LPS induces substantially enhanced inflammatory events, which include the signaling molecules nuclear factor κB and mitogen-activated protein kinase (MAPK), in Prx II–deficient macrophages. This effect of LPS was mediated by the robust up-regulation of the reactive oxygen species (ROS)–generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and the phosphorylation of p47phox. Furthermore, challenge with LPS induced greater sensitivity to LPS-induced lethal shock in Prx II–deficient mice than in wild-type mice. Intravenous injection of Prx II–deficient mice with the adenovirus-encoding Prx II gene significantly rescued mice from LPS-induced lethal shock as compared with the injection of a control virus. The administration of catalase mimicked the reversal effects of Prx II on LPS-induced inflammatory responses in Prx II–deficient cells, which suggests that intracellular H2O2 is attributable, at least in part, to the enhanced sensitivity to LPS. These results indicate that Prx II is an essential negative regulator of LPS-induced inflammatory signaling through modulation of ROS synthesis via NADPH oxidase activities and, therefore, is crucial for the prevention of excessive host responses to microbial products
    corecore