20 research outputs found

    Effect of blade number on rotor efficiency and noise emission at hovering condition

    Get PDF
    The configuration of rotors significantly impacts the aerodynamic efficiency and noise emission of multicopters. To date, there are no general guidelines regarding how many blades a rotor should use for optimal aerodynamic performance and minimum noise emission. From the perspectives of aerodynamics and acoustics during the hovering condition, two key parameters, i.e., figure of merit (FM) and overall sound pressure level (OASPL), are evaluated to determine the optimal blade number (BN). The number of blades chosen in this study is BN = 2–6, which is largely observed in commercial multicopters. A genetic algorithm was developed to optimize blade design for each BN-rotor configuration. The individuals are evaluated by steady computational fluid dynamics (CFD) simulations and acoustic analogy for optimizations, and the detailed analyses of optimal ones are further explored by unsteady CFD simulations. The planform of the baseline blade is maintained, and the radial distribution of twist angles is the parameter for optimization. While generating the same thrust, the value of FM keeps increasing as the number of blades increases from 2 to 4, after which the FM value reaches a plateau. The value of OASPL keeps decreasing as the number of blades increases. The reason for the FM and OASPL value trends vs blade number is explained with the numerical simulation results, and a general design rule is suggested at the end

    Analysis of influential factors for the relationship between PM_(2.5) and AOD in Beijing

    Get PDF
    The relationship between aerosol optical depth (AOD) and PM_(2.5) is often investigated in order to obtain surface PM_(2.5) from satellite observation of AOD with a broad area coverage. However, various factors could affect the AOD–PM_(2.5) regressions. Using both ground and satellite observations in Beijing from 2011 to 2015, this study analyzes the influential factors including the aerosol type, relative humidity (RH), planetary boundary layer height (PBLH), wind speed and direction, and the vertical structure of aerosol distribution. The ratio of PM_(2.5) to AOD, which is defined as η, and the square of their correlation coefficient (R^2) have been examined. It shows that η varies from 54.32 to 183.14, 87.32 to 104.79, 95.13 to 163.52, and 1.23 to 235.08 µg m^(−3) with aerosol type in spring, summer, fall, and winter, respectively. η is smaller for scattering-dominant aerosols than for absorbing-dominant aerosols, and smaller for coarse-mode aerosols than for fine-mode aerosols. Both RH and PBLH affect the η value significantly. The higher the RH, the smaller the η, and the higher the PBLH, the smaller the η. For AOD and PM2.5 data with the correction of RH and PBLH compared to those without, R^2 of monthly averaged PM_(2.5) and AOD at 14:00 LT increases from 0.63 to 0.76, and R^2 of multi-year averaged PM_(2.5) and AOD by time of day increases from 0.01 to 0.93, 0.24 to 0.84, 0.85 to 0.91, and 0.84 to 0.93 in four seasons respectively. Wind direction is a key factor for the transport and spatial–temporal distribution of aerosols originated from different sources with distinctive physicochemical characteristics. Similar to the variation in AOD and PM_(2.5), η also decreases with the increasing surface wind speed, indicating that the contribution of surface PM_(2.5) concentrations to AOD decreases with surface wind speed. The vertical structure of aerosol exhibits a remarkable change with seasons, with most particles concentrated within about 500 m in summer and within 150 m in winter. Compared to the AOD of the whole atmosphere, AOD below 500 m has a better correlation with PM_(2.5), for which R^2 is 0.77. This study suggests that all the above influential factors should be considered when we investigate the AOD–PM_(2.5) relationships

    Analysis of influential factors for the relationship between PM_(2.5) and AOD in Beijing

    Get PDF
    The relationship between aerosol optical depth (AOD) and PM_(2.5) is often investigated in order to obtain surface PM_(2.5) from satellite observation of AOD with a broad area coverage. However, various factors could affect the AOD–PM_(2.5) regressions. Using both ground and satellite observations in Beijing from 2011 to 2015, this study analyzes the influential factors including the aerosol type, relative humidity (RH), planetary boundary layer height (PBLH), wind speed and direction, and the vertical structure of aerosol distribution. The ratio of PM_(2.5) to AOD, which is defined as η, and the square of their correlation coefficient (R^2) have been examined. It shows that η varies from 54.32 to 183.14, 87.32 to 104.79, 95.13 to 163.52, and 1.23 to 235.08 µg m^(−3) with aerosol type in spring, summer, fall, and winter, respectively. η is smaller for scattering-dominant aerosols than for absorbing-dominant aerosols, and smaller for coarse-mode aerosols than for fine-mode aerosols. Both RH and PBLH affect the η value significantly. The higher the RH, the smaller the η, and the higher the PBLH, the smaller the η. For AOD and PM2.5 data with the correction of RH and PBLH compared to those without, R^2 of monthly averaged PM_(2.5) and AOD at 14:00 LT increases from 0.63 to 0.76, and R^2 of multi-year averaged PM_(2.5) and AOD by time of day increases from 0.01 to 0.93, 0.24 to 0.84, 0.85 to 0.91, and 0.84 to 0.93 in four seasons respectively. Wind direction is a key factor for the transport and spatial–temporal distribution of aerosols originated from different sources with distinctive physicochemical characteristics. Similar to the variation in AOD and PM_(2.5), η also decreases with the increasing surface wind speed, indicating that the contribution of surface PM_(2.5) concentrations to AOD decreases with surface wind speed. The vertical structure of aerosol exhibits a remarkable change with seasons, with most particles concentrated within about 500 m in summer and within 150 m in winter. Compared to the AOD of the whole atmosphere, AOD below 500 m has a better correlation with PM_(2.5), for which R^2 is 0.77. This study suggests that all the above influential factors should be considered when we investigate the AOD–PM_(2.5) relationships

    Comparison of thoracoabdominal versus abdominal-transhiatal surgical approaches in Siewert type II adenocarcinoma at the esophagogastric junction: Protocol for a prospective multicenter randomized controlled trial

    Get PDF
    BackgroundSiewert type II adenocarcinoma of the esophagogastric junction (Siewert II AEG) can be resected by the right thoracoabdominal surgical approach (RTA) or abdominal-transhiatal surgical approach (TH) under minimally invasive conditions. Although both surgical methods achieve complete tumor resection, there is a debate as to whether the former method is superior to or at least noninferior to the latter in terms of surgical safety. Currently, a small number of retrospective studies have compared the two surgical approaches, with inconclusive results. As such, a prospective multicenter randomized controlled trial is necessary to validate the value of RTA (Ivor-Lewis) compared to TH.MethodsThe planned study is a prospective, multicenter, randomized clinical trial. Patients (n=212) with Siewert II AEG that could be resected by either of the above two surgical approaches will be included in this trial and randomized to the RTA group (n=106) or the TH group (n=106). The primary outcome will be 3-year disease-free survival (DFS). The secondary outcomes will include 5-year overall survival (OS), incidence of postoperative complications, postoperative mortality, local recurrence rate, number and location of removed lymph nodes, quality of life (QOL), surgical Apgar score, and duration of the operation. Follow-ups are scheduled every three months for the first 3 years after the surgery and every six months for the next 2 years.DiscussionAmong Siewert II AEG patients with resectable tumors, this is the first prospective, randomized clinical trial comparing the surgical safety of minimally invasive RTA and TH. RTA is hypothesized to provide better digestive tract reconstruction and dissection of mediastinal lymph nodes while maintaining a high quality of life and good postoperative outcome. Moreover, this trial will provide a high level of evidence for the choice of surgical procedures for Siewert II AEG.Clinical trial registrationChinese Ethics Committee of Registering Clinical Trials, identifier (ChiECRCT20210635); Clinical Trial.gov, identifier (NCT05356520)

    Plant Diseased Lesion Image Segmentation and Recognition Based on Improved Multi-Scale Attention Net

    No full text
    Fallen leaf disease can lead to a decrease in leaf area, a decrease in photosynthetic products, insufficient accumulation of fruit sugar, poor coloring and flavor, and a large number of fruits developing sunburn. To address the aforementioned issue, this article introduces a deep learning algorithm designed for the segmentation and recognition of agricultural disease images, particularly those involving leaf lesions. The essence of this algorithm lies in enhancing the Multi-scale Attention Net (MA-Net) encoder and attention mechanism to improve the model’s performance when processing agricultural disease images. Firstly, an analysis was conducted on MA-Net, and its limitations were identified. Compared to res-block, Mix Vision Transformer (MiT) consumes relatively less time during the training process, can better capture global and contextual information in images, and has better robustness and scalability. Then, the feature extraction parts of different networks were used as encoders to join the MA-Net network. Compared to a Position-wise Attention Block (PAB), which has higher computational complexity and requires a larger amount of computing resources, Effective Channel Attention net (ECANet) reduces the number of model parameters and computation by learning the correlation between channels, as well as having a better denoising ability. The experimental results show that the proposed solution has high accuracy and stability in agricultural disease image segmentation and recognition. The mean Intersection over Union (mIoU) is 98.1%, which is 0.2% higher than traditional MA-Net; Dice Loss is 0.9%, which is 0.1% lower than traditional MA-Net

    Application of Iron Tailings-Based Composite Supplementary Cementitious Materials (SCMs) in Green Concrete

    No full text
    How to treat the iron tailings of mining solid waste with high value is an urgent problem on a global scale. In recent years, the application of iron tailings in the building materials industry has attracted the attention of many scholars. The conversion of iron tailings into green building materials helps achieve carbon neutrality and high-value utilization of solid waste, and promotes sustainable development. Although iron tailings have been extensively studied as supplementary cementitious materials, the performance of concrete is not ideal due to its low activity. In this study, the hybrid supplementary cementitious materials system was prepared by iron tailings, phosphorus slag, and steel slag, and the effects of supplementary cementitious materials type, iron tailings content, iron tailings grinding time, and supplementary cementitious materials content on concrete performance were studied. The compressive properties, iron tailings properties, pore structure, interfacial transition zone, and element distribution of hydration products of concrete were tested by compressive strength tests, X-ray Diffractometer (XRD), X-ray Photoelectron Spectroscopy (XPS), Mercury Intrusion Porosimetry (MIP), Backscattering Electron Tests (BSE), and Energy Dispersive Spectrometer (EDS). The results show that further grinding improves the iron tailings activity. There is a synergistic mechanism between steel slag and phosphorus slag in the composite supplementary cementitious materials, which overcomes the low activity defect of iron tailings and produces concrete with a compressive strength exceeding 40 MPa. The composite supplementary cementitious materials can optimize the interfacial transition zone of the concrete interface and reduce the calcium–silicon ratio of the hydration products. However, it will deteriorate the pore structure of the concrete matrix, cause part of the concrete matrix to be damaged and lead to a loss of compressive strength, and the loss is acceptable. This work broadens the methods of comprehensive utilization of iron tailings and also provides a reference for a more detailed understanding of the properties of iron tailings-based concrete
    corecore