114,940 research outputs found
The Carriers of the Interstellar Unidentified Infrared Emission Features: Constraints from the Interstellar C-H Stretching Features at 3.2-3.5 Micrometers
The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and
11.3 micrometer, commonly attributed to polycyclic aromatic hydrocarbon (PAH)
molecules, have been recently ascribed to mixed aromatic/aliphatic organic
nanoparticles. More recently, an upper limit of <9% on the aliphatic fraction
(i.e., the fraction of carbon atoms in aliphatic form) of the UIE carriers
based on the observed intensities of the 3.4 and 3.3 micrometer emission
features by attributing them to aliphatic and aromatic C-H stretching modes,
respectively, and assuming A_34./A_3.3~0.68 derived from a small set of
aliphatic and aromatic compounds, where A_3.4 and A_3.3 are respectively the
band strengths of the 3.4 micrometer aliphatic and 3.3 micrometer aromatic C-H
bonds.
To improve the estimate of the aliphatic fraction of the UIE carriers, here
we analyze 35 UIE sources which exhibit both the 3.3 and 3.4 micrometer C-H
features and determine I_3.4/I_3.3, the ratio of the power emitted from the 3.4
micrometer feature to that from the 3.3 micrometer feature. We derive the
median ratio to be ~ 0.12. We employ density functional theory
and second-order perturbation theory to compute A_3.4/A_3.3 for a range of
methyl-substituted PAHs. The resulting A_3.4/A_3.3 ratio well exceeds 1.4, with
an average ratio of ~1.76. By attributing the 3.4 micrometer
feature exclusively to aliphatic C-H stretch (i.e., neglecting anharmonicity
and superhydrogenation), we derive the fraction of C atoms in aliphatic form to
be ~2%. We therefore conclude that the UIE emitters are predominantly aromatic.Comment: 14 pages, 5 figures, 1 table; accepted for publication in The
Astrophysical Journa
The Carriers of the "Unidentified" Infrared Emission Features: Clues from Polycyclic Aromatic Hydrocarbons with Aliphatic Sidegroups
The "unidentified" infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6,
and 11.3 m are ubiquitously seen in various astrophysical regions. The UIE
features are characteristic of the stretching and bending vibrations of
aromatic hydrocarbons. The 3.3 m feature resulting from aromatic C--H
stretches is often accompanied by a weaker feature at 3.4 m often
attributed to aliphatic C--H stretches. The ratio of the observed intensity of
the 3.3 m aromatic C--H feature () to that of the 3.4 m
aliphatic C--H feature () allows one to estimate the aliphatic
fraction (i.e. , the number of C atoms in
aliphatic units to that in aromatic rings) of the UIE carriers, provided the
intrinsic oscillator strengths of the 3.3 m aromatic C--H stretch
() and the 3.4 m aliphatic C--H stretch () are known.
In this article we summarize the computational results on and
and their implications for the aromaticity and aliphaticity of the
UIE carriers. We use density functional theory and second-order perturbation
theory to derive and from the infrared vibrational spectra
of seven PAHs with various aliphatic substituents (e.g., methyl-, dimethyl-,
ethyl-, propyl-, butyl-PAHs, and PAHs with unsaturated alkyl-chains). The mean
band strengths of the aromatic () and aliphatic () C--H
stretches are derived and then employed to estimate the aliphatic fraction of
the UIE carriers by comparing / with /. We
conclude that the UIE emitters are predominantly aromatic, as revealed by the
observationally-derived ratio ~ 0.12 and the
computationally-derived ratio ~ 1.76 which suggest an
upper limit of ~ 0.02 for the aliphatic
fraction of the UIE carriers.Comment: 67 pages, 18 figures, 8 tables; invited article accepted for
publication in "New Astronomy Review"; a considerable fraction of this
article is concerned with the computational techniques and results, readers
who are mainly interested in astrophysics may wish to only read
"Introduction", and "Astrophysical Implications
Accurate determination of terahertz optical constants by vector network analyzer of Fabry-Perot response
This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.38.005438. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.We present a method based on a Fabry-Perot model to efficiently and accurately estimate optical constants of wafer samples in transmission-only measurements performed by a vector network analyzer (VNA). The method is demonstrated on two separate wafer samples: one of silicon and the other of polymethylmethacrylate. Results show that the method can not only acquire optical constants accurately and simply over a broad frequency domain but also overcome the limitations of calculation for dispersive and lossy materials to which existing methods are susceptible, such as those based on VNA-driven quasi-optical transmissometers and terahertz time-domain spectrometry
- …