4,635 research outputs found

    Slow optical solitons via intersubband transitions in a semiconductor quantum well

    Full text link
    We show the formation of bright and dark slow optical solitons based on intersubband transitions in a semiconductor quantum well (SQW). Using the coupled Schrodinger-Maxwell approach, we provide both analytical and numerical results. Such a nonlinear optical process may be used for the control technology of optical delay lines and optical buffers in the SQW solid-state system. With appropriate parameters, we also show the generation of a large cross-phase modulation (XPM). Since the the intersubband energy level can be easily tuned by an external bias voltage, the present investigation may open the possibility for electrically controlled phase modulator in the solid-state system

    Nonlinear localized modes in bandgap microcavities

    Get PDF
    [[abstract]]We study experimentally an electrically pumped GaAs-based bandgap structure based on a vertical cavity surface emitting laser (VCSEL). We demonstrate that a microcavity embedded into this bandgap VCSEL structure supports localized optical modes without any holding beam. We propose a model of surface-structured VCSELs based on a reduced dissipative wave equation for describing electromagnetic modes in such semiconductor cavities and analyze a crossover between linear and nonlinear solitonlike cavity modes.[[fileno]]2030136010022[[department]]電機工程學
    corecore