733 research outputs found

    Cloning, expression, and characterization of lactic acid bacteria recombinant prolidases

    Get PDF
    Lactobacillus plantarum (Lb. plantarum) NRRL B4496 and Lactococcus lactis (Lc. lactis) NRRL B1821 prolidase genes were isolated, cloned, and sequenced. The sequence-confirmed genes were subcloned into the expression systems. The recombinant prolidases from the pKK223-3 systems were purified through ammonium sulphate precipitation and anion-exchange column chromatography. Recombinant Lb. plantarum prolidase, however, demonstrated a loss of activity during the purification. The following characterization work was performed on purified recombinant Lc. lactis prolidase. The mass spectroscopic result and the molecular modelling suggested a 80 kDa homodimer with two metal cations at the catalytic centre of the prolidase. The optimum temperature was 50 ºC and showed more than 50% activities between 40 and 55 ºC. The enzyme was most stable at 30 ºC and withstood 20 min of heat-treatment up to 60 ºC, however, lost activity over 70 ºC. Circular dichroism indicated a denaturation temperature of 67 ºC. The optimum pH was 6.5 for hydrolyzing Leu-Pro and the enzyme did not display any activity below pH 5.5 nor above pH 7 with this peptide. However, Phe-Pro was hydrolyzed the fastest at pH 7 and Arg-Pro had a maximum rate at pH 9. This metallopeptidase exhibited a broad range of metal cation preference, hydrolyzing Leu-Pro with Mn++, Co++, Zn++, Ca++, and Mg++. Further kinetic analysis showed unusual allostery of the enzyme (Hill coefficient: 1.3). The unique substrate intakes onGlu-Pro and tripeptides were observed while Val-Pro was not hydrolyzed. The molecular modelling of this prolidase suggested a difference in the substrate specificity resulting from a loop structure, L33 to R40, near the substrate binding site

    Biotransformation and Interactions of Selenium with Mixed and Pure Culture Biofilms

    Get PDF
    Biofilms have been reported to have an important role in the biogeochemical cycling of toxic elements in aquatic systems. Despite this important role, the complexity of biofilms and chemical and physical modifications that occur in conventional microscopic techniques hinder research progress. Thus, this research utilized a suite of less destructive synchrotron-based techniques to investigate selenium biotransformation in biofilms. Natural biofilm collected from a coal mine-affected field site was examined with X-ray absorption spectroscopy (XAS), the results of which suggested the presence of methylated and elemental selenium. Biofilms generated in the laboratory using collected coal mine-affected water were investigated using confocal laser scanning microscopy (CLSM), (μ-)XAS and extended X-ray absorption fine structure (EXAFS). The results showed biotransformation of added oxyanion species (selenate, selenite, arsenate or arsenite). Micro X-ray fluorescence imaging (μ-XRF) and μ-XAS combined with CLSM revealed that selenium was highly localized in the biofilm in chemically reduced forms. Isolation and partial 16S rRNA gene sequencing suggested there were 4 principle bacterial genera responsible for these biotransformations of selenium. Further examination of multispecies biofilm and pure-culture biofilm (Arthrobacter sp SASK-Se22) exposed to high concentrations of selenate and selenite was carried out using synchrotron-based nano-scale scanning transmission X-ray microscopy (STXM) and nano-XRF imaging at the selenium L and K near-edges. These results demonstrated that selenium was biotransformed to nano-particulate elemental selenium and that the selenium particles were closely associated with lipid within the biofilm. The distributions of selenate and selenite as well as elemental selenium within this complex biofilm structure were investigated using a novel combination of STXM and XRF on identical areas of biofilms. Transmission electron microscopy showed that the biogenic elemental selenium was sub-micron-sized, ranging from 50 to 700 nm in diameter, and was closely associated with microorganisms. The presence of submicron-sized elemental selenium may suggest possible applications of the biofilms in bioremediation or in the semiconductor industry where micro- to nano- sized selenium particles are in great demand. Overall, this research demonstrated a novel application of synchrotron-based spectroscopic and imaging techniques to biofilm research, the results of which advance understanding of selenium biotransformation in multispecies and pure-culture biofilms

    Selenium Biotransformations in an Engineered Aquatic Ecosystem for Bioremediation of Agricultural Wastewater via Brine Shrimp Production

    Get PDF
    An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filterfeeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp (Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested

    THE ANTERIOR CRUCIATE LIGAMENT INURY PREVENTION PROGRAM: A META-ANALYSIS

    Get PDF
    The purpose of this study was to evaluate the effect of a neuromuscular protocol on the prevention of anterior cruciate ligament (ACL) injury by performing meta-analysis. An extensive literature review was conducted to identify relevant studies, and eventually, only seven randomized controlled trials or prospective cohort studies were included in the analysis. Subgroup analysis revealed that an age under 18, soccer rather than handball, pre- and in-season training rather than either pre or in-season training, and the plyometrics and strengthening components rather than balancing were significant. Metaanalysis showed that pre- and in-season neuromuscular training with an emphasis on plyometrics and strengthening exercises was effective at preventing ACL injury in female athletes, especially in those under 18 years of age

    Cordycepin inhibits human ovarian cancer by inducing autophagy and apoptosis through Dickkopf-related protein 1/β-catenin signaling

    Get PDF
    Cordycepin, the major active component from Cordyceps militaris, has been reported to significantly inhibit some types of cancer; however, its effects on ovarian cancer are still not well understood. In this study, we treated human ovarian cancer cells with different doses of cordycepin and found that it dose-dependently reduced ovarian cancer cell viability, based on Cell counting kit-8 reagent. Immunoblotting showed that cordycepin increased Dickkopf-related protein 1 (Dkk1) levels and inhibited β-catenin signaling. Atg7 knockdown in ovarian cancer cells significantly inhibited cordycepin-induced apoptosis, whereas β-catenin overexpression abolished the effects of cordycepin on cell death and proliferation. Furthermore, we found that Dkk1 overexpression by transfection downregulated the expression of c-Myc and cyclin D1. siRNA-mediated Dkk1 silencing downregulated the expression of Atg8, beclin, and LC3 and promoted β-catenin translocation from the cytoplasm into the nucleus. These results suggest that cordycepin inhibits ovarian cancer cell growth, possibly through coordinated autophagy and Dkk1/β-catenin signaling. Taken together, our findings provide new insights into the treatment of ovarian cancer using cordycepin

    Insulin Facilitates the Recovery of Myocardial Contractility and Conduction during Cardiac Compression in Rabbits with Bupivacaine-Induced Cardiovascular Collapse

    Get PDF
    Bupivacaine inhibits cardiac conduction and contractility. Insulin enhances cardiac repolarization and myocardial contractility. We hypothesizes that insulin therapy would be effective in resuscitating bupivacaine-induced cardiac toxicity in rabbits. Twelve rabbits were tracheally intubated and midline sternotomy was performed under general anesthesia. Cardiovascular collapse (CVC) was induced by an IV bolus injection of bupivacaine 10 mg/kg. The rabbits were treated with either saline (control) or insulin injection, administered as a 2 U/kg bolus. Internal cardiac massage was performed until the return of spontaneous circulation (ROSC) and the time to the return of sinus rhythm (ROSR) was also noted in both groups. Arterial blood pressure, and electrocardiography were continuously monitored for 30 min and plasma bupivacaine concentrations at every 5 min. The ROSC, ROSR and normalization of QRS duration were attained faster in the insulin-treated group than in the control group. At the ROSC, there was a significant difference in bupivacaine concentration between two groups. Insulin facilitates the return of myocardial contractility and conduction from bupivacaine-induced CVC in rabbits. However, recovery of cardiac conduction is dependent mainly on the change of plasma bupivacaine concentrations

    Taurine chloramine differentially inhibits matrix metalloproteinase 1 and 13 synthesis in interleukin-1β stimulated fibroblast-like synoviocytes

    Get PDF
    It has been suggested that taurine chloramine (TauCl) plays an important role in the downregulation of proinflammatory mediators. However, little is known about its effect on the expression of matrix metalloproteinases (MMPs). In this study, we investigated the effects of TauCl on synovial expression of MMPs. The effects of TauCl on MMP expression in IL-1β stimulated fibroblast-like synoviocytes (FLSs) were studied using the following techniques. Real-time PCR and semi-quantitative PCR were employed to analyze the mRNA expression of MMPs. ELISA was used to determine protein levels of MMPs. Western blot analyses were performed to analyze the mitogen-activated protein kinase and inhibitor of nuclear factor-κB (IκB) kinase signalling pathways. Finally, electrophoretic mobility shift assay and immunohistochemistry were used to assess localization of transcription factors. IL-1β increased the transcriptional and translational levels of MMP-1 and MMP-13 in rheumatoid arthritis FLSs, whereas the levels of MMP-2 and MMP-9 were unaffected. TauCl at a concentration of 400 to 600 μmol/l greatly inhibited the transcriptional and translational expression of MMP-13, but the expression of MMP-1 was significantly inhibited at 800 μmol/l. At a concentration of 600 μmol/l, TauCl did not significantly inhibit phosphorylation of mitogen-activated protein kinase or IκB degradation in IL-1β stimulated rheumatoid arthritis FLSs. The degradation of IκB was significantly inhibited at a TauCl concentration of 800 μmol/l. The inhibitory effect of TauCl on IκB degradation was confirmed by electrophoretic mobility shift assay and immunochemical staining for localization of nuclear factor-κB. TauCl differentially inhibits the expression of MMP-1 and MMP-13, and inhibits expression of MMP-1 primarily through the inhibition of IκB degradation, whereas it inhibits expression of MMP-13 through signalling pathways other than the IκB pathway
    corecore