37 research outputs found
Key issues and development direction of petroleum geology research of source rock strata in China
After more than 20 years of technological advancements, the novel ïŹeld of oil and gas production from source rock strata, which comprise tight and shale oil and gas reservoirs, has become the major contributor to the increase in unconventional oil and gas reserves in China. Accordingly, this ïŹeld has gradually entered a new stage of revolutionary development. The oil and gas production in China from source rock strata will achieve sustainable development in the future. Different types of source rock strata present distinct challenges and require diverse development paths. Based on the geological conditions of source rock strata in China, this study focuses on identifying the âsweet areasâ among hydrocarbon accumulations. It speciïŹcally analyzes the key development issues of tight oil, tight gas, shale oil, shale gas, and coal-bed methane, while proposing potential solutions and identifying the possible directions for future development. This study aims to provide a reference for scientists concerned with the development of unconventional oil and gas reserves in China.Cited as: Li, J., Yang, Z., Wu, S., Pan, S. Key issues and development direction of petroleum geology research on source rock strata in China. Advances in Geo-Energy Research, 2021, 5(2): 121-126, doi: 10.46690/ager.2021.02.0
Mass spectrometry-based metabolomics for discovering active ingredients and exploring action mechanism of herbal medicine
Natural products derived from herbal medicine are a fruitful source of lead compounds because of their structural diversity and potent bioactivities. However, despite the success of active compounds derived from herbal medicine in drug discovery, some approaches cannot effectively elucidate the overall effect and action mechanism due to their multi-component complexity. Fortunately, mass spectrometry-based metabolomics has been recognized as an effective strategy for revealing the effect and discovering active components, detailed molecular mechanisms, and multiple targets of natural products. Rapid identification of lead compounds and isolation of active components from natural products would facilitate new drug development. In this context, mass spectrometry-based metabolomics has established an integrated pharmacology framework for the discovery of bioactivity-correlated constituents, target identification, and the action mechanism of herbal medicine and natural products. High-throughput functional metabolomics techniques could be used to identify natural product structure, biological activity, efficacy mechanisms, and their mode of action on biological processes, assisting bioactive lead discovery, quality control, and accelerating discovery of novel drugs. These techniques are increasingly being developed in the era of big data and use scientific language to clarify the detailed action mechanism of herbal medicine. In this paper, the analytical characteristics and application fields of several commonly used mass spectrometers are introduced, and the application of mass spectrometry in the metabolomics of traditional Chinese medicines in recent years and its active components as well as mechanism of action are also discussed
Interspecific competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa on different phosphorus substrates
Phosphorus (P) is responsible for algal growth and the structural changes in algal communities. Therefore, it is essential to know whether the different phosphorus availability to different algae can change the community structure. In this study, the interspecific competition was investigated at two bloom-forming cyanobacterium, Cylindrospermopsis raciborskii and Microcystis aeruginosa, when both were treated with five different phosphate compounds, including K2HPO4, beta-glycerol phosphate, (2-aminoethyl)-phosphinic acid, glyphosate, and P-free. The results of mono-culture experiments showed that the two species could utilize the dissolved organic phosphorus (DOP) and K2HPO4 (DIP) as the sole P resource. Moreover, the specific growth rates and the endogenous alkaline phosphatase activity in M. aeruginosa cells were much lower than those in C. raciborskii under DOP and DIP treatments. In the co-cultured experiments, however, a significant biomass increase in C. raciborskii was observed in all experimental P treatments, except for glyphosate, regardless of its initial cell density proportion. A 31.8-63.4% increase in cell number of C. raciborskii was found after incubated into K2HPO4, while the highest biomass of mixed samples, 17.72 x 10(6) cell mL(-1), was observed in the (2-aminoethyl)-phosphinic acid treatment (50C50M). Additionally, higher specific growth rate was also found in C. raciborskii when compared with M. aeruginosa under P-free; the increasing proportion of C. raciborskii were 29.1% (50C50M), 16.4% (75C25M), and 36.7% (25C75M), respectively. When the mixed samples were co-cultivated under glyphosate, C. raciborskii cells appeared to be depressed, whereas the cell density of M. aeruginosa increased rapidly. The findings indicated that an excellent P competition might give some advantages for C. raciborskii dominance in natural waters with DIP limitation or DOP abundance
Pickering Emulsion Stabilized by HordeinâWhey Protein Isolate Complex: Delivery System of Quercetin
As a lipophilic flavonol, quercetin has low bioavailability, which limits its application in foods. This work aimed to prepare a hordein-based system to deliver quercetin. We constructed hordeinâwhey isolate protein fibril (WPIF) complexes (H-Ws) by anti-solvent precipitation method at pH 2.5. The TEM results of the complexes showed that spherical-like hordein particles were wrapped in WPIF clusters to form an interconnected network structure. FTIR spectra revealed that hydrogen bonds and hydrophobic interactions were the main driving forces for the complex formation. H-W1 (the mass ratio of hordein to WPIF was 1:1) with a three-phase contact angle of 70.2° was chosen to stabilize Pickering emulsions with oil volume fractions (Ï) of 40â70%. CLSM images confirmed that the oil droplets were gradually embedded in the three-dimensional network structure of H-W1 with the increase in oil volume fraction. The emulsion with Ï = 70% showed a tight gel structure. Furthermore, this emulsion exhibited high encapsulation efficiency (97.8%) and a loading capacity of 0.2%, demonstrating the potential to deliver hydrophobic bioactive substances. Compared with free quercetin, the bioaccessibility of the encapsulated quercetin (35%) was significantly improved. This study effectively promoted the application of hordein-based delivery systems in the food industry
Controlled Sharing Mechanism of Data Based on the Consortium Blockchain
In the process of sharing data, the costless replication of electric energy data leads to the problem of uncontrolled data and the difficulty of third-party access verification. This paper proposes a controlled sharing mechanism of data based on the consortium blockchain. The data flow range is controlled by the data isolation mechanism between channels provided by the consortium blockchain by constructing a data storage consortium chain to achieve trusted data storage, combining attribute-based encryption to complete data access control and meet the demands for granular data accessibility control and secure sharing; the data flow transfer ledger is built to record the original data life cycle management and effectively record the data transfer process of each data controller. Taking the application scenario of electric energy data sharing as an example, the scheme is designed and simulated on the Linux system and Hyperledger Fabric. Experimental results have verified that the mechanism can effectively control the scope of access to electrical energy data and realize the control of the data by the data owner
Unveiling the impact of glycerol phosphate (DOP) in the dinoflagellate Peridinium bipes by physiological and transcriptomic analysis
Background The ability to use dissolved organic phosphorus (DOP) is important for survival and competition when phytoplankton are faced with scarcity of dissolved inorganic phosphorus (DIP). However, phosphorus availability to the freshwater dinoflagellate Peridinium bipes has received relatively little attention, the efficiency of glycerol phosphate use by phytoplankton has rarely been investigated, and the regulatory molecular mechanisms remain unclear. Result In the present study, cultures of the freshwater dinoflagellate Peridinium bipes were set up in 119 medium (+DIP), DIP-depleted 119 medium (P-free), and beta-glycerol phosphate-replacing-DIP medium (+DOP). Gene expression was analyzed using transcriptomic sequencing. The growth rate of cells in DOP treatment group was similar to that in DIP group, but chlorophyll a fluorescence parameters RC/CS0, ABS/CS0, TR0/CS0, ET0/CS0 and RE0/CS0 markedly decreased in the DOP group. Transcriptomic analysis revealed that genes involved in photosynthesis, including psbA, psbB, psbC, psbD, psaA and psaB, were downregulated in the DOP group relative to the DIP group. Glycerol-3-phosphate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase, rather than alkaline phosphatase, were responsible for beta-glycerol phosphate use. Intercellular gluconeogenesis metabolism was markedly changed in the DOP group. In addition, genes involved in ATP synthases, the TCA cycle, oxidative phosphorylation, fatty acid metabolism and amino acid metabolism in P. bipes were significantly upregulated in the DOP group compared with the DIP treatment. Conclusions These findings suggested that beta-glycerol phosphate could influence the photosynthesis and metabolism of P. bipes, which provided a comprehensive understanding of the phosphorus physiology of P. bipes. The mechanisms underlying the use of beta-glycerol phosphate and other DOPs are different in different species of dinoflagellates and other phytoplankton. DIP reduction may be more effective in controlling the bloom of P. bipes than DOP reduction
Exploring Potential Biomarkers and Molecular Mechanisms of Ischemic Cardiomyopathy and COVID-19 Comorbidity Based on Bioinformatics and Systems Biology
Cardiovascular complications combined with COVID-19 (SARS-CoV-2) lead to a poor prognosis in patients. The common pathogenesis of ischemic cardiomyopathy (ICM) and COVID-19 is still unclear. Here, we explored potential molecular mechanisms and biomarkers for ICM and COVID-19. Common differentially expressed genes (DEGs) of ICM (GSE5406) and COVID-19 (GSE164805) were identified using GEO2R. We performed enrichment and proteinâprotein interaction analyses and screened key genes. To confirm the diagnostic performance for these hub genes, we used external datasets (GSE116250 and GSE211979) and plotted ROC curves. Transcription factor and microRNA regulatory networks were constructed for the validated hub genes. Finally, drug prediction and molecular docking validation were performed using cMAP. We identified 81 common DEGs, many of which were enriched in terms of their relation to angiogenesis. Three DEGs were identified as key hub genes (HSP90AA1, HSPA9, and SRSF1) in the proteinâprotein interaction analysis. These hub genes had high diagnostic performance in the four datasets (AUC > 0.7). Mir-16-5p and KLF9 transcription factor co-regulated these hub genes. The drugs vindesine and ON-01910 showed good binding performance to the hub genes. We identified HSP90AA1, HSPA9, and SRSF1 as markers for the co-pathogenesis of ICM and COVID-19, and showed that co-pathogenesis of ICM and COVID-19 may be related to angiogenesis. Vindesine and ON-01910 were predicted as potential therapeutic agents. Our findings will contribute to a deeper understanding of the comorbidity of ICM with COVID-19
Formation and âsweet areaâ evaluation of liquid-rich hydrocarbons in shale strata
Liquid-rich hydrocarbons in shale strata include two kinds of resources, i.e. tight oil and shale oil. Based on the exploration and research progress of liquid-rich hydrocarbons in shale at home and abroad, their formation condition, accumulation mechanism, classification, and differences between lacustrine and marine shale systems are examined, and âsweet areasâ are evaluated further. Analysis on the geological characteristics of the liquid-rich hydrocarbons in the shale strata in North America and China shows the liquid-rich hydrocarbons have two basic features: large-scale continuous distribution and no stable industrial production. The massive accumulation of the liquid-rich hydrocarbons needs four fundamental formation conditions: stable tectonic background, widespread high quality source rocks, large-scale tight reservoirs with massive reservoir space, and co-existence of source and reservoir. The study reveals the formation mechanisms of the liquid-rich hydrocarbons: source-reservoir coupling and porosity decrease during the diagenetic tightness; and identifies 24 kinds in 6 categories of the liquid-rich hydrocarbons. It is concluded that the geological conditions of the lacustrine shales in China are characterized by lower thermal gradient and stronger heterogeneity than those of North America, so large scale âsweet areasâ have to be picked out to push up industrial production steadily. âSweet areasâ evaluation should consider the three aspects of geology, engineering and economics comprehensively, and the maturity of source rocks is first and foremost factor controlling the âsweet areaâ distribution. In China, prospective shale areas should meet the following conditions: the Ro between 0.8% and 1.3%, TOC higher than 2%, laminated shales or tight porous reservoirs, higher porosity (more than 8% for tight oil, and more than 3% for shale oil), higher content of brittle minerals (more than 70% for tight oil, and more than 40% for shale oil), oil saturation of 50%â90%, lower crude oil viscosity or higher formation pressure, and rich natural fractures. Liquid-rich hydrocarbons in shale strata are huge in resource scale, so deepening the geological understanding on the formation and distribution of liquid-rich hydrocarbons in marine and lacustrine shales constantly is of great significance for exploration and development of this important field. Key words: tight oil, shale oil, sweet area evaluation, unconventional oil and gas, fine grain sediment, tight reservoi
UV-thermal dual cured anti-bacterial thiol-ene networks with superior performance from renewable resources
Bio-based anti-bacterial cross-linked films with superior properties were prepared via UV-thermal induced thiol-ene "click" reaction of diallyl itaconate (DAI), eugenol allyl ether (EAE) with trimethylolpropane tris (3-mercaptopropionate). DAI and EAE were made from one-step reaction of itaconic acid and eugenol with ally! bromide, respectively. The curing behaviors studied by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and gel content measurement illustrated that UV-thermal dual cure technology made the thiol-ene reaction more completely and produced films with higher performance compared with UV cure technology. The investigation of the thermal and mechanical properties of the cross-linked films by DSC, thermogravimetric analysis (TGA) and tensile test indicated that the glass transition temperature, tensile strength and modulus of the films were significantly improved after introducing DAI, and all the films exhibited similar and high thermal stability. Meanwhile, these bio-based polymer films showed excellent efficiency in killing common bacterias, e.g. S. aureus and E. coli in the dynamic shake test. (C) 2016 Elsevier Ltd. All rights reserved
Oligo-peptide I-C-F-6 inhibits hepatic stellate cell activation and ameliorates CCl4-induced liver fibrosis by suppressing NF-ÎșB signaling and Wnt/ÎČ-catenin signaling
Oligo-peptide I-C-F-6 is a Carapax trionycis extract component that has an effect on hepatic fibrosis, however, its mechanism of action is still unclear. This study investigated whether oligo-peptide I-C-F-6 could inhibit liver fibrosis by suppressing NF-ÎșB and Wnt/ÎČ-catenin signaling, which are important in liver fibrosis. HSC-T6 cells were treated with oligo-peptide I-C-F-6, and rats were divided randomly into five groups: control (saline), CCl4, CCl4 plus oligo-peptide I-C-F-6 (0.12 and 0.24 mg/kg), and CCl4 plus colchicine (0.11 mg/kg). Here, we demonstrated that oligo-peptide I-C-F-6 ameliorated liver injury, inflammation, and hepatic fibrogenesis induced by CCl4. Oligo-peptide I-C-F-6 also inhibited the activation of hepatic stellate cells (HSCs) in vivo and in vitro, as evaluated by the expression of transforming growth factor-ÎČ1 (TGF-ÎČ1) and α-smooth muscle actin (α-SMA), which is a specific marker of HSC activation. Moreover, oligo-peptide I-C-F-6 significantly reduced the expression and distribution of ÎČ-catenin, P-AKT, phospho (P)-GSK-3ÎČ, nuclear factor ÎșB (NF-ÎșB) P65, phospho-P65, and IÎșB kinase α/ÎČ (IKK-α/ÎČ) levels; additionally, IÎșB-α level was elevated both in vivo and in vitro. Together, these results indicate that oligo-peptide I-C-F-6 has hepatoprotective and anti-fibrotic effects in animal models of liver fibrosis, the mechanism of which may be related to modulating NF-ÎșB and Wnt/ÎČ-catenin signaling. Keywords: Oligo-peptide I-C-F-6, Hepatic fibrosis, Hepatic stellate cells (HSCs), NF-ÎșB signaling, Wnt/ÎČ-catenin signalin