27 research outputs found

    DCTTS: Discrete Diffusion Model with Contrastive Learning for Text-to-speech Generation

    Full text link
    In the Text-to-speech(TTS) task, the latent diffusion model has excellent fidelity and generalization, but its expensive resource consumption and slow inference speed have always been a challenging. This paper proposes Discrete Diffusion Model with Contrastive Learning for Text-to-Speech Generation(DCTTS). The following contributions are made by DCTTS: 1) The TTS diffusion model based on discrete space significantly lowers the computational consumption of the diffusion model and improves sampling speed; 2) The contrastive learning method based on discrete space is used to enhance the alignment connection between speech and text and improve sampling quality; and 3) It uses an efficient text encoder to simplify the model's parameters and increase computational efficiency. The experimental results demonstrate that the approach proposed in this paper has outstanding speech synthesis quality and sampling speed while significantly reducing the resource consumption of diffusion model. The synthesized samples are available at https://github.com/lawtherWu/DCTTS.Comment: 5 pages, submitted to ICASS

    A scalable fabrication process of polymer microneedles

    Get PDF
    While polymer microneedles may easily be fabricated by casting a solution in a mold, either centrifugation or vacuumizing is needed to pull the viscous polymer solution into the microholes of the mold. We report a novel process to fabricate polymer microneedles with a one-sided vacuum using a ceramic mold that is breathable but water impermeable. A polymer solution containing polyvinyl alcohol and polysaccharide was cast in a ceramic mold and then pulled into the microholes by a vacuum applied to the opposite side of the mold. After cross-linking and solidification through freeze-thawing, the microneedle patch was detached from the mold and transferred with a specially designed instrument for the drying process, during which the patch shrank evenly to form an array of regular and uniform needles without deformation. Moreover, the shrinkage of the patches helped to reduce the needles’ size to ease microfabrication of the male mold. The dried microneedle patches were finally punched to the desired sizes to achieve various properties, including sufficient strength to penetrate skin, microneedles-absorbed water-swelling ratios, and drug-release kinetics. The results showed that the microneedles were strong enough to penetrate pigskin and that their performance was satisfactory in terms of swelling and drug release

    A Potential Orthogonal Matching Pursuit Algorithm for Device Free Moving Target Localization

    No full text

    A Novel Approach Based on Matrix Factorization for Recovering Missing Time Series Sensor Data

    No full text

    Device-Free Targets Tracking with Sparse Sampling: A Kronecker Compressive Sensing Approach

    No full text

    The Exploration of Novel Pharmacophore Characteristics and Multidirectional Elucidation of Structure-Activity Relationship and Mechanism of Sesquiterpene Pyridine Alkaloids from Tripterygium Based on Computational Approaches

    No full text
    Sesquiterpene pyridine alkaloids are a large group of highly oxygenated sesquiterpenoids, which are characterized by a macrocyclic dilactone skeleton containing 2-(carboxyalkyl) nicotinic acid and dihydro-β-agarofuran sesquiterpenoid, and are believed to be the active and less toxic components of Tripterygium. In this study, 55 sesquiterpene pyridine alkaloids from Tripterygium were subjected to identification of pharmacophore characteristics and potential targets analysis. Our results revealed that the greatest structural difference of these compounds was in the pyridine ring and the pharmacophore model-5 (Pm-05) was the best model that consisted of three features including hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), and hydrophobic (HY), especially hydrophobic group located in the pyridine ring. It was proposed that 2-(carboxyalkyl) nicotinic acid part possessing a pyridine ring system was not only a pharmacologically active center but also a core of structural diversity of alkaloids from Tripterygium wilfordii. Furthermore, sesquiterpene pyridine alkaloids from Tripterygium were predicted to target multiple proteins and pathways and possibly played essential roles in the cure of Alzheimer’s disease, breast cancer, Chagas disease, and nonalcoholic fatty liver disease (NAFLD). They also had other pharmacological effects, depending on the binding interactions between pyridine rings of these compounds and active cavities of the target genes platelet-activating factor receptor (PTAFR), cannabinoid receptor 1 (CNR1), cannabinoid receptor 1 (CNR2), squalene synthase (FDFT1), and heat shock protein HSP 90-alpha (HSP90AA1). Taken together, the results of this present study indicated that sesquiterpene pyridine alkaloids from Tripterygium are promising candidates that exhibit potential for development as medicine sources and need to be promoted
    corecore