114 research outputs found

    Collider Signatures of Higgs-portal Scalar Dark Matter

    Get PDF
    In the simplest Higgs-portal scalar dark matter model, the dark matter mass has been restricted to be either near the resonant mass (mh/2m_h/2) or in a large-mass region by the direct detection at LHC Run 1 and LUX. While the large-mass region below roughly 3 TeV can be probed by the future Xenon1T experiment, most of the resonant mass region is beyond the scope of Xenon1T. In this paper, we study the direct detection of such scalar dark matter in the narrow resonant mass region at the 14 TeV LHC and the future 100 TeV hadron collider. We show the luminosities required for the 2σ2\sigma exclusion and 5σ5\sigma discovery.Comment: 11 pages, 4 figures; v2: minor changes, references added, journal versio

    SEINE: SEgment-based Indexing for NEural information retrieval

    Full text link
    Many early neural Information Retrieval (NeurIR) methods are re-rankers that rely on a traditional first-stage retriever due to expensive query time computations. Recently, representation-based retrievers have gained much attention, which learns query representation and document representation separately, making it possible to pre-compute document representations offline and reduce the workload at query time. Both dense and sparse representation-based retrievers have been explored. However, these methods focus on finding the representation that best represents a text (aka metric learning) and the actual retrieval function that is responsible for similarity matching between query and document is kept at a minimum by using dot product. One drawback is that unlike traditional term-level inverted index, the index formed by these embeddings cannot be easily re-used by another retrieval method. Another drawback is that keeping the interaction at minimum hurts retrieval effectiveness. On the contrary, interaction-based retrievers are known for their better retrieval effectiveness. In this paper, we propose a novel SEgment-based Neural Indexing method, SEINE, which provides a general indexing framework that can flexibly support a variety of interaction-based neural retrieval methods. We emphasize on a careful decomposition of common components in existing neural retrieval methods and propose to use segment-level inverted index to store the atomic query-document interaction values. Experiments on LETOR MQ2007 and MQ2008 datasets show that our indexing method can accelerate multiple neural retrieval methods up to 28-times faster without sacrificing much effectiveness

    Supporting Business Privacy Protection in Wireless Sensor Networks

    Get PDF
    With the pervasive use of wireless sensor networks (WSNs) within commercial environments, business privacy leakage due to the exposure of sensitive information transmitted in a WSN has become a major issue for enterprises. We examine business privacy protection in the application of WSNs. We propose a business privacy-protection system (BPS) that is modeled as a hierarchical profile in order to filter sensitive information with respect to enterprise-specified privacy requirements. The BPS aims at solving a tradeoff between metrics that are defined to estimate the utility of information and the business privacy risk. We design profile, risk assessment, and filtration agents to implement the BPS based on multiagent technology. The effectiveness of our proposed BPS is validated by experiments

    IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models

    Full text link
    Recent years have witnessed the strong power of large text-to-image diffusion models for the impressive generative capability to create high-fidelity images. However, it is very tricky to generate desired images using only text prompt as it often involves complex prompt engineering. An alternative to text prompt is image prompt, as the saying goes: "an image is worth a thousand words". Although existing methods of direct fine-tuning from pretrained models are effective, they require large computing resources and are not compatible with other base models, text prompt, and structural controls. In this paper, we present IP-Adapter, an effective and lightweight adapter to achieve image prompt capability for the pretrained text-to-image diffusion models. The key design of our IP-Adapter is decoupled cross-attention mechanism that separates cross-attention layers for text features and image features. Despite the simplicity of our method, an IP-Adapter with only 22M parameters can achieve comparable or even better performance to a fully fine-tuned image prompt model. As we freeze the pretrained diffusion model, the proposed IP-Adapter can be generalized not only to other custom models fine-tuned from the same base model, but also to controllable generation using existing controllable tools. With the benefit of the decoupled cross-attention strategy, the image prompt can also work well with the text prompt to achieve multimodal image generation. The project page is available at \url{https://ip-adapter.github.io}
    corecore