43 research outputs found
Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B05102, doi:10.1029/2010JB007944.Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190–221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone.Our research is supported by the National Basic Research Program
(2009CB219505), International Science & Technology Cooperation program
of China (2010DFA21740), and National Natural Science Foundation
of China (40930845)
Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke
Importance
It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy.
Objective
To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO.
Design, Setting, and Participants
This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy.
Main Outcomes and Measures
The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours.
Results
Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo.
Conclusions and Relevance
Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172
Effect of thermal stimulation on gas production from hydrate deposits in Shenhu area of the South China Sea
The Shenhu area on the northern continental slope of the South China Sea (SCS) is one of the promising fields for gas hydrate exploitation. The hydrate-bearing layer at drilling site SH2 is overlain and underlain by permeable zones of mobile water. In this study a vertical well was configured with a perforated Interval I for producing gas and a coiled Interval II for heating sediment. The hydrate is dissociated by a small depressurization at Interval I and a thermal stimulation at Interval II. The numerical simulations indicate that the thermal stimulation has a significant effect on gas release from the hydrates in the production duration and improves the gas production in the late period. The gas released by thermal stimulation cannot be produced as quickly as the production gets operated because of the hard pathway for fluids to flow in the sediments. The gas production is enhanced due to the heating for 7242 m(3) in the whole production. Increasing heating temperature at Interval II can improve gas production and restrain water output, and advance the arrival time of the gas flow from the zone at Interval II. The absolute criterion and relative criterion suggest that the thermal stimulation in the production schemes is pronounced for releasing gas from the hydrate deposit, but the production efficiency of gas is limited by the sediment of low permeability. The study provides an insight into the production potential of the hydrate accumulations by thermal stimulation with depressurization in two wells, and a basis for analyzing economic feasibility of gas production from the area
Construction of Life-Cycle Simulation Framework of Chronic Diseases and Their Comorbidities Based on Population Cohort
Life-cycle population follow-up data collection is time-consuming and often takes decades. General cohort data studies collect short-to-medium-term data from populations of different age groups. The purpose of constructing a life-cycle simulation method is to find an efficient and reliable way to achieve the way to characterize life-cycle disease metastasis from these short-to-medium-term data. In this paper, we have presented our effort at construction of a full lifetime population cohort simulation framework. The design aim is to generate a comprehensive understanding of the disease transition for full lifetime when we only have short-or-medium term population cohort data. We have conducted several groups of experiments to show the effectiveness of our method
Analysis of the Ignition Behavior Based on Similarity Factor Method
The chemical kinetics mechanism is an important factor to accurately predict the combustion characteristics of constant-volume bomb (CVB). In this study, an n-heptane oxidation mechanism constructed by Wang et al. is introduced to study the correlation of the ignition behaviors with the mechanism constructed by Chang et al. The effects of the similarity factor method in the analysis of ignition behaviors of fuel in CVB were repeatedly verified by changing the important spraying parameters: injection pressure and hole diameter. Through further verification, it was found that the combustion process was controlled at approximately 850 K and stoichiometric ratio mixture of fuel/air in CVB, which corresponds to the negative temperature coefficient region at stoichiometric ratio mixture in shock tube (ST). The mechanism verified by the experiment under the condition in ST can reflect the chemical ignition in CVB. In addition, the similarity factor method was less dependent on the chemical reaction mechanism and boundary conditions
Geophysical Indicators of Gas Hydrate in the Northern Continental Margin, South China Sea
Gas hydrate drilling results show that gas hydrate has a close relationship with strong bottom-simulating reflectors (BSRs) identified from seismic data in the Baiyun sag, South China Sea. The BSRs observed on seismic profiles at the crests of submarine canyons indicate the likely existence of gas hydrate. We calculate the acoustic impedance using constrained sparse spike inversion (CSSI), the interval velocity, and the seismic reflection characteristics such as reflection strength, instantaneous frequency, blanking, and enhanced reflection to demonstrate the presence of gas hydrate. Higher acoustic impedance and P-wave velocity were identified above the BSR. A remarkable low impedance, low frequency, and acoustic blanking indicated the presence of gas below gas hydrate stability zone. The occurrence of gas hydrate at the crests of canyons suggests that the abundance of gas hydrate in Baiyun sag may be due to the migrating submarine canyons providing the structural reliefs and the topographic ridges
Analysis of the Ignition Behavior Based on Similarity Factor Method
The chemical kinetics mechanism is an important factor to accurately predict the combustion characteristics of constant-volume bomb (CVB). In this study, an n-heptane oxidation mechanism constructed by Wang et al. is introduced to study the correlation of the ignition behaviors with the mechanism constructed by Chang et al. The effects of the similarity factor method in the analysis of ignition behaviors of fuel in CVB were repeatedly verified by changing the important spraying parameters: injection pressure and hole diameter. Through further verification, it was found that the combustion process was controlled at approximately 850 K and stoichiometric ratio mixture of fuel/air in CVB, which corresponds to the negative temperature coefficient region at stoichiometric ratio mixture in shock tube (ST). The mechanism verified by the experiment under the condition in ST can reflect the chemical ignition in CVB. In addition, the similarity factor method was less dependent on the chemical reaction mechanism and boundary conditions
Construction of Life-Cycle Simulation Framework of Chronic Diseases and Their Comorbidities Based on Population Cohort
Life-cycle population follow-up data collection is time-consuming and often takes decades. General cohort data studies collect short-to-medium-term data from populations of different age groups. The purpose of constructing a life-cycle simulation method is to find an efficient and reliable way to achieve the way to characterize life-cycle disease metastasis from these short-to-medium-term data. In this paper, we have presented our effort at construction of a full lifetime population cohort simulation framework. The design aim is to generate a comprehensive understanding of the disease transition for full lifetime when we only have short-or-medium term population cohort data. We have conducted several groups of experiments to show the effectiveness of our method