107 research outputs found

    Multi-Agent Robust Control Synthesis from Global Temporal Logic Tasks

    Full text link
    This paper focuses on the heterogeneous multi-agent control problem under global temporal logic tasks. We define a specification language, called extended capacity temporal logic (ECaTL), to describe the required global tasks, including the number of times that a local or coupled signal temporal logic (STL) task needs to be satisfied and the synchronous requirements on task satisfaction. The robustness measure for ECaTL is formally designed. In particular, the robustness for synchronous tasks is evaluated from both the temporal and spatial perspectives. Mixed-integer linear constraints are designed to encode ECaTL specifications, and a two-step optimization framework is further proposed to realize task-satisfied motion planning with high spatial robustness and synchronicity. Simulations are conducted to demonstrate the expressivity of ECaTL and the efficiency of the proposed control synthesis approach.Comment: 7 pages, 3 figure

    An Assessment of Anthropogenic CO_2 Emissions by Satellite-Based Observations in China

    Get PDF
    Carbon dioxide (CO_2) is the most important anthropogenic greenhouse gas and its concentration in atmosphere has been increasing rapidly due to the increase of anthropogenic CO_2 emissions. Quantifying anthropogenic CO_2 emissions is essential to evaluate the measures for mitigating climate change. Satellite-based measurements of greenhouse gases greatly advance the way of monitoring atmospheric CO2 concentration. In this study, we propose an approach for estimating anthropogenic CO_2 emissions by an artificial neural network using column-average dry air mole fraction of CO_2 (XCO_2) derived from observations of Greenhouse gases Observing SATellite (GOSAT) in China. First, we use annual XCO_2 anomalies (dXCO_2) derived from XCO_2 and anthropogenic emission data during 2010–2014 as the training dataset to build a General Regression Neural Network (GRNN) model. Second, applying the built model to annual dXCO_2 in 2015, we estimate the corresponding emission and verify them using ODIAC emission. As a results, the estimated emissions significantly demonstrate positive correlation with that of ODIAC CO_2 emissions especially in the areas with high anthropogenic CO_2 emissions. Our results indicate that XCO_2 data from satellite observations can be applied in estimating anthropogenic CO_2 emissions at regional scale by the machine learning. This developed method can estimate carbon emission inventory in a data-driven way. In particular, it is expected that the estimation accuracy can be further improved when combined with other data sources, related CO_2 uptake and emissions, from satellite observations

    A Data-Driven Assessment of Biosphere-Atmosphere Interaction Impact on Seasonal Cycle Patterns of XCO_2 Using GOSAT and MODIS Observations

    Get PDF
    Using measurements of the column-averaged CO_2 dry air mole fraction (XCO_2) from GOSAT and biosphere parameters, including normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), leaf area index (LAI), gross primary production (GPP), and land surface temperature (LST) from MODIS, this study proposes a data-driven approach to assess the impacts of terrestrial biosphere activities on the seasonal cycle pattern of XCO_2. A unique global land mapping dataset of XCO_2 with a resolution of 1° by 1° in space, and three days in time, from June 2009 to May 2014, which facilitates the assessment at a fine scale, is first produced from GOSAT XCO_2 retrievals. We then conduct a statistical fitting method to obtain the global map of seasonal cycle amplitudes (SCA) of XCO_2 and NDVI, and implement correlation analyses of seasonal variation between XCO_2 and the vegetation parameters. As a result, the spatial distribution of XCO_2 SCA decreases globally with latitude from north to south, which is in good agreement with that of simulated XCO_2 from CarbonTracker. The spatial pattern of XCO_2 SCA corresponds well to the vegetation seasonal activity revealed by NDVI, with a strong correlation coefficient of 0.74 in the northern hemisphere (NH). Some hotspots in the subtropical areas, including Northern India (with SCA of 8.68 ± 0.49 ppm on average) and Central Africa (with SCA of 8.33 ± 0.25 ppm on average), shown by satellite measurements, but missed by model simulations, demonstrate the advantage of satellites in observing the biosphere–atmosphere interactions at local scales. Results from correlation analyses between XCO_2 and NDVI, EVI, LAI, or GPP show a consistent spatial distribution, and NDVI and EVI have stronger negative correlations over all latitudes. This may suggest that NDVI and EVI can be better vegetation parameters in characterizing the seasonal variations of XCO_2 and its driving terrestrial biosphere activities. We, furthermore, present the global distribution of phase lags of XCO_2 compared to NDVI in seasonal variation, which, to our knowledge, is the first such map derived from a completely data-driven approach using satellite observations. The impact of retrieval error of GOSAT data on the mapping data, especially over high-latitude areas, is further discussed. Results from this study provide reference for better understanding the distribution of the strength of carbon sink by terrestrial ecosystems and utilizing remote sensing data in assessing the impact of biosphere–atmosphere interactions on the seasonal cycle pattern of atmospheric CO_2 columns

    SETD2 regulates chromatin accessibility and transcription to suppress lung tumorigenesis

    Get PDF
    SETD2, a H3K36 trimethyltransferase, is the most frequently mutated epigenetic modifier in lung adenocarcinoma, with a mutation frequency of approximately 9%. However, how SETD2 loss of function promotes tumorigenesis remains unclear. Using conditional Setd2-KO mice, we demonstrated that Setd2 deficiency accelerated the initiation of KrasG12D-driven lung tumorigenesis, increased tumor burden, and significantly reduced mouse survival. An integrated chromatin accessibility and transcriptome analysis revealed a potentially novel tumor suppressor model of SETD2 in which SETD2 loss activates intronic enhancers to drive oncogenic transcriptional output, including the KRAS transcriptional signature and PRC2-repressed targets, through regulation of chromatin accessibility and histone chaperone recruitment. Importantly, SETD2 loss sensitized KRAS-mutant lung cancer to inhibition of histone chaperones, the FACT complex, or transcriptional elongation both in vitro and in vivo. Overall, our studies not only provide insight into how SETD2 loss shapes the epigenetic and transcriptional landscape to promote tumorigenesis, but they also identify potential therapeutic strategies for SETD2 mutant cancers

    Regional uncertainty of GOSAT XCO_2 retrievals in China: quantification and attribution

    Get PDF
    The regional uncertainty of the column-averaged dry air mole fraction of CO_2 (XCO_2) retrieved using different algorithms from the Greenhouse gases Observing SATellite (GOSAT) and its attribution are still not well understood. This paper investigates the regional performance of XCO_2 within a latitude band of 37–42° N segmented into 8 cells in a grid of 5° from west to east (80–120° E) in China, where typical land surface types and geographic conditions exist. The former includes desert, grassland and built-up areas mixed with cropland; and the latter includes anthropogenic emissions that change from small to large from west to east, including those from the megacity of Beijing. For these specific cells, we evaluate the regional uncertainty of GOSAT XCO_2 retrievals by quantifying and attributing the consistency of XCO_2 retrievals from four algorithms (ACOS, NIES, OCFP and SRFP) by intercomparison. These retrievals are then specifically compared with simulated XCO_2 from the high-resolution nested model in East Asia of the Goddard Earth Observing System 3-D chemical transport model (GEOS-Chem). We also introduce the anthropogenic CO_2 emissions data generated from the investigation of surface emitting point sources that was conducted by the Ministry of Environmental Protection of China to GEOS-Chem simulations of XCO_2 over the Chinese mainland. The results indicate that (1) regionally, the four algorithms demonstrate smaller absolute biases of 0.7–1.1 ppm in eastern cells, which are covered by built-up areas mixed with cropland with intensive anthropogenic emissions, than those in the western desert cells (1.0–1.6 ppm) with a high-brightness surface from the pairwise comparison results of XCO_2 retrievals. (2) Compared with XCO_2 simulated by GEOS-Chem (GEOS-XCO_2), the XCO_2 values from ACOS and SRFP have better agreement, while values from OCFP are the least consistent with GEOS-XCO_2. (3) Viewing attributions of XCO_2 in the spatio-temporal pattern, ACOS and SRFP demonstrate similar patterns, while OCFP is largely different from the others. In conclusion, the discrepancy in the four algorithms is the smallest in eastern cells in the study area, where the megacity of Beijing is located and where there are strong anthropogenic CO_2 emissions, which implies that XCO_2 from satellite observations could be reliably applied in the assessment of atmospheric CO_2 enhancements induced by anthropogenic CO_2 emissions. The large inconsistency among the four algorithms presented in western deserts which displays a high albedo and dust aerosols, moreover, demonstrates that further improvement is still necessary in such regions, even though many algorithms have endeavored to minimize the effects of aerosols scattering and surface albedo

    Constructed wetlands as nature-based solutions for the removal of antibiotics: performance, microbial response, and emergence of antimicrobial resistance (AMR)

    Get PDF
    Antibiotics and antibiotic resistance genes (ARGs) have been regarded as emerging pollutants and pose significant threats to the aquatic environment and to human health. This study aimed to investigate the removal of nutrients, antibiotics, and the emergency of ARGs in domestic sewage by means of constructed wetlands (CWs) filled with an electroconductive media, i.e., coke. In this study, the antibiotics removal efficiencies ranged from 13% to 100%, which were significantly higher in the system filled with coke compared with the CWs filled with common quartz sand (7%~100%). Moreover, the presence of wetland plants could also significantly improve the removal of nutrients and tetracyclines. The results also demonstrated the importance of substrate selection and wetland plants in CWs on the alternation of microbial communities and structures, where the electroconductive media showed a promising effect on increasing the removal of antibiotics in CWs. In terms of the emergency of ARGs, the CWs filled with coke retained the most ARGs (10,690 copies/g) compare with the control groups (8576–7934 copies/g) in the substrate. As the accumulated ARGs could be released back to the watercourse due to the environmental/operation condition changes, the application of such an advanced substrate in CWs may pose a more significant potential threat to the environment. With these results, this study provided new insight into selection of the substrates and plants for wastewater treatment to achieve a sustainable and secure water future

    Allele-specific induction of IL-1beta expression by C/EBPbeta and PU.1 contributes to increased tuberculosis susceptibility

    Get PDF
    Mycobacterium tuberculosis infection is associated with a spectrum of clinical outcomes, from long-term latent infection to different manifestations of progressive disease. Pro-inflammatory pathways, such as those controlled by IL-1beta, have the contrasting potential both to prevent disease by restricting bacterial replication, and to promote disease by inflicting tissue damage. Thus, the ultimate contribution of individual inflammatory pathways to the outcome of M. tuberculosis infection remains ambiguous. In this study, we identified a naturally-occurring polymorphism in the human IL1B promoter region, which alters the association of the C/EBPbeta and PU.1 transcription factors and controls Mtb-induced IL-1beta production. The high-IL-1beta expressing genotype was associated with the development of active tuberculosis, the severity of pulmonary disease and poor treatment outcome in TB patients. Higher IL-1beta expression did not suppress the activity of IFN-gamma-producing T cells, but instead correlated with neutrophil accumulation in the lung. These observations support a specific role for IL-1beta and granulocytic inflammation as a driver of TB disease progression in humans, and suggest novel strategies for the prevention and treatment of tuberculosis

    Effectiveness of intravenous r-tPA versus UK for acute ischaemic stroke: a nationwide prospective Chinese registry study

    Get PDF
    BACKGROUND Intravenous recombinant tissue plasminogen activator (r-tPA) and urokinase (UK) are both recommended for the treatment of acute ischaemic stroke (AIS) in China, but with few comparative outcome data being available. We aimed to compare the outcomes of these two thrombolytic agents for the treatment of patients within 4.5 hours of onset of AIS in routine clinical practice in China. METHODS A pre-planned, prospective, nationwide, multicentre, real-world registry of consecutive patients with AIS (age ≥18 years) who received r-tPA or UK within 4.5 hours of symptom onset according to local decision-making and guideline recommendations during 2017-2019. The primary effectiveness outcome was the proportion of patients with an excellent functional outcome (defined by modified Rankin scale scores 0 to 1) at 90 days. The key safety endpoint was symptomatic intracranial haemorrhage according to standard definitions. Multivariable logistic regression was used for comparative analysis, with adjustment according to propensity scores to ensure balance in baseline characteristics. RESULTS Overall, 4130 patients with AIS were registered but 320 had incomplete or missing data, leaving 3810 with available data for analysis of whom 2666 received r-tPA (median dose 0.88 (IQR 0.78-0.90) mg/kg) and 1144 received UK (1.71 (1.43-2.00)×10 international unit per kilogram). There were several significant intergroup differences in patient characteristics: r-tPA patients were more educated, had less history of stroke, lower systolic blood pressure, greater neurological impairment and shorter treatment times from symptom onset than UK patients. However, in adjusted analysis, the frequency of excellent outcome (OR 1.18, 95% CI 1.00 to 1.40, p=0.052) and symptomatic intracranial haemorrhage (OR 0.70, 95% CI 0.33 to 1.47, p=0.344) were similar between groups. CONCLUSIONS UK may be as effective and carry a similar safety profile as r-tPA in treating mild to moderate AIS within guidelines in China. REGISTRATION: http://www.clinicaltrials.gov. unique identifier: NCT02854592
    • …
    corecore