26 research outputs found

    Bearing-Based Target Entrapping Control of Multiple Uncertain Agents With Arbitrary Maneuvers

    Full text link
    This paper is concerned with bearing-based cooperative target entrapping control of multiple uncertain agents with arbitrary maneuvers including shape deformation, rotations, scalings, etc. A leader-follower structure is used, where the leaders move with the predesigned trajectories, and the followers are steered by an estimation-based control method, integrating a distance estimator using bearing measurements and a stress matrix-based formation controller. The signum functions are used to compensate for the uncertainties so that the agents' accelerations can be piecewise continuous and bounded to track the desired dynamics. With proper design of the leaders' trajectories and a geometric configuration, an affine matrix is determined so that the persistently exciting conditions of the inter-agent relative bearings can be satisfied since the bearing rates are related to different weighted combinations of the affine matrix vectors. The asymptotic convergence of the estimation error and control error is proved using Filipov properties and cascaded system theories. A sufficient condition for inter-agent collision avoidance is also proposed. Finally, simulation results are given to validate the effectiveness of the method in both 2D and 3D cases.Comment: 13 pages, 6 figures, the paper has been accepted by IFAC WC 202

    Distributed Optimal Control of Energy Hubs for Micro-Integrated Energy Systems

    Get PDF

    Mechanism and Growth of Flexible ZnO Nanostructure Arrays in a Facile Controlled Way

    Get PDF
    Nanostructure arrays-based flexible devices have revolutionary impacts on the application of traditional semiconductor devices. Here, a one-step method to synthesize flexible ZnO nanostructure arrays on Zn-plated flexible substrate in Zn(NO3)2/NH3⋅H2O solution system at 70–90∘C was developed. We found out that the decomposition of Zn(OH)2 precipitations, formed in lower NH3⋅H2O concentration, in the bulk solution facilitates the formation of flower-like structure. In higher temperature, 90∘C, ZnO nanoplate arrays were synthesized by the hydrolysis of zinc hydroxide. Highly dense ZnO nanoparticale layer formed by the reaction of NH3⋅H2O with Zn plating layer in the initial self-seed process could improve the vertical alignment of the nanowires arrays. The diameter of ZnO nanowire arrays, from 200 nm to 60 nm, could be effectively controlled by changing the stability of Zn(NH3)42+ complex ions by varying the ratio of Zn(NO3)2 to NH3⋅H2O which further influence the release rate of Zn2+ ions. This is also conformed by different amounts of the Zn vacancy as determined by different UV emissions of the PL spectra in the range of 380–403 nm

    A Parallel Software Package for Nonlinear Global Optimization

    No full text
    In this paper, we report a Fortran 90/95 software package, ParaGlobSol, that reliably finds numerical solutions for continuous nonlinear global optimization problems in parallel

    Recent Progress on Circular RNAs in the Development of Skeletal Muscle and Adipose Tissues of Farm Animals

    No full text
    Circular RNAs (circRNAs) are a highly conserved and specifically expressed novel class of covalently closed non-coding RNAs. CircRNAs can function as miRNA sponges, protein scaffolds, and regulatory factors, and play various roles in development and other biological processes in mammals. With the rapid development of high-throughput sequencing technology, thousands of circRNAs have been discovered in farm animals; some reportedly play vital roles in skeletal muscle and adipose development. These are critical factors affecting meat yield and quality. In this review, we have highlighted the recent advances in circRNA-related studies of skeletal muscle and adipose in farm animals. We have also described the biogenesis, properties, and biological functions of circRNAs. Furthermore, we have comprehensively summarized the functions and regulatory mechanisms of circRNAs in skeletal muscle and adipose development in farm animals and their effects on economic traits such as meat yield and quality. Finally, we propose that circRNAs are putative novel targets to improve meat yield and quality traits during animal breeding

    Recent Progress on Circular RNAs in the Development of Skeletal Muscle and Adipose Tissues of Farm Animals

    No full text
    Circular RNAs (circRNAs) are a highly conserved and specifically expressed novel class of covalently closed non-coding RNAs. CircRNAs can function as miRNA sponges, protein scaffolds, and regulatory factors, and play various roles in development and other biological processes in mammals. With the rapid development of high-throughput sequencing technology, thousands of circRNAs have been discovered in farm animals; some reportedly play vital roles in skeletal muscle and adipose development. These are critical factors affecting meat yield and quality. In this review, we have highlighted the recent advances in circRNA-related studies of skeletal muscle and adipose in farm animals. We have also described the biogenesis, properties, and biological functions of circRNAs. Furthermore, we have comprehensively summarized the functions and regulatory mechanisms of circRNAs in skeletal muscle and adipose development in farm animals and their effects on economic traits such as meat yield and quality. Finally, we propose that circRNAs are putative novel targets to improve meat yield and quality traits during animal breeding
    corecore