244 research outputs found

    Learning Depth with Convolutional Spatial Propagation Network

    Full text link
    Depth prediction is one of the fundamental problems in computer vision. In this paper, we propose a simple yet effective convolutional spatial propagation network (CSPN) to learn the affinity matrix for various depth estimation tasks. Specifically, it is an efficient linear propagation model, in which the propagation is performed with a manner of recurrent convolutional operation, and the affinity among neighboring pixels is learned through a deep convolutional neural network (CNN). We can append this module to any output from a state-of-the-art (SOTA) depth estimation networks to improve their performances. In practice, we further extend CSPN in two aspects: 1) take sparse depth map as additional input, which is useful for the task of depth completion; 2) similar to commonly used 3D convolution operation in CNNs, we propose 3D CSPN to handle features with one additional dimension, which is effective in the task of stereo matching using 3D cost volume. For the tasks of sparse to dense, a.k.a depth completion. We experimented the proposed CPSN conjunct algorithms over the popular NYU v2 and KITTI datasets, where we show that our proposed algorithms not only produce high quality (e.g., 30% more reduction in depth error), but also run faster (e.g., 2 to 5x faster) than previous SOTA spatial propagation network. We also evaluated our stereo matching algorithm on the Scene Flow and KITTI Stereo datasets, and rank 1st on both the KITTI Stereo 2012 and 2015 benchmarks, which demonstrates the effectiveness of the proposed module. The code of CSPN proposed in this work will be released at https://github.com/XinJCheng/CSPN.Comment: v1.2: add some exps v1.1: fixed some mistakes, v1: 17 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:1808.0015

    RealPoint3D: Point Cloud Generation from a Single Image with Complex Background

    Full text link
    3D point cloud generation by the deep neural network from a single image has been attracting more and more researchers' attention. However, recently-proposed methods require the objects be captured with relatively clean backgrounds, fixed viewpoint, while this highly limits its application in the real environment. To overcome these drawbacks, we proposed to integrate the prior 3D shape knowledge into the network to guide the 3D generation. By taking additional 3D information, the proposed network can handle the 3D object generation from a single real image captured from any viewpoint and complex background. Specifically, giving a query image, we retrieve the nearest shape model from a pre-prepared 3D model database. Then, the image together with the retrieved shape model is fed into the proposed network to generate the fine-grained 3D point cloud. The effectiveness of our proposed framework has been verified on different kinds of datasets. Experimental results show that the proposed framework achieves state-of-the-art accuracy compared to other volumetric-based and point set generation methods. Furthermore, the proposed framework works well for real images in complex backgrounds with various view angles.Comment: 8 pages, 6 figure

    Detailed Human Shape Estimation from a Single Image by Hierarchical Mesh Deformation

    Full text link
    This paper presents a novel framework to recover detailed human body shapes from a single image. It is a challenging task due to factors such as variations in human shapes, body poses, and viewpoints. Prior methods typically attempt to recover the human body shape using a parametric based template that lacks the surface details. As such the resulting body shape appears to be without clothing. In this paper, we propose a novel learning-based framework that combines the robustness of parametric model with the flexibility of free-form 3D deformation. We use the deep neural networks to refine the 3D shape in a Hierarchical Mesh Deformation (HMD) framework, utilizing the constraints from body joints, silhouettes, and per-pixel shading information. We are able to restore detailed human body shapes beyond skinned models. Experiments demonstrate that our method has outperformed previous state-of-the-art approaches, achieving better accuracy in terms of both 2D IoU number and 3D metric distance. The code is available in https://github.com/zhuhao-nju/hmd.gitComment: CVPR 2019 Ora

    Safe Navigation with Human Instructions in Complex Scenes

    Full text link
    In this paper, we present a robotic navigation algorithm with natural language interfaces, which enables a robot to safely walk through a changing environment with moving persons by following human instructions such as "go to the restaurant and keep away from people". We first classify human instructions into three types: the goal, the constraints, and uninformative phrases. Next, we provide grounding for the extracted goal and constraint items in a dynamic manner along with the navigation process, to deal with the target objects that are too far away for sensor observation and the appearance of moving obstacles like humans. In particular, for a goal phrase (e.g., "go to the restaurant"), we ground it to a location in a predefined semantic map and treat it as a goal for a global motion planner, which plans a collision-free path in the workspace for the robot to follow. For a constraint phrase (e.g., "keep away from people"), we dynamically add the corresponding constraint into a local planner by adjusting the values of a local costmap according to the results returned by the object detection module. The updated costmap is then used to compute a local collision avoidance control for the safe navigation of the robot. By combining natural language processing, motion planning, and computer vision, our developed system is demonstrated to be able to successfully follow natural language navigation instructions to achieve navigation tasks in both simulated and real-world scenarios. Videos are available at https://sites.google.com/view/snh

    TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents

    Full text link
    To safely and efficiently navigate in complex urban traffic, autonomous vehicles must make responsible predictions in relation to surrounding traffic-agents (vehicles, bicycles, pedestrians, etc.). A challenging and critical task is to explore the movement patterns of different traffic-agents and predict their future trajectories accurately to help the autonomous vehicle make reasonable navigation decision. To solve this problem, we propose a long short-term memory-based (LSTM-based) realtime traffic prediction algorithm, TrafficPredict. Our approach uses an instance layer to learn instances' movements and interactions and has a category layer to learn the similarities of instances belonging to the same type to refine the prediction. In order to evaluate its performance, we collected trajectory datasets in a large city consisting of varying conditions and traffic densities. The dataset includes many challenging scenarios where vehicles, bicycles, and pedestrians move among one another. We evaluate the performance of TrafficPredict on our new dataset and highlight its higher accuracy for trajectory prediction by comparing with prior prediction methods.Comment: Accepted by AAAI(Oral) 201

    The ApolloScape Open Dataset for Autonomous Driving and its Application

    Full text link
    Autonomous driving has attracted tremendous attention especially in the past few years. The key techniques for a self-driving car include solving tasks like 3D map construction, self-localization, parsing the driving road and understanding objects, which enable vehicles to reason and act. However, large scale data set for training and system evaluation is still a bottleneck for developing robust perception models. In this paper, we present the ApolloScape dataset [1] and its applications for autonomous driving. Compared with existing public datasets from real scenes, e.g. KITTI [2] or Cityscapes [3], ApolloScape contains much large and richer labelling including holistic semantic dense point cloud for each site, stereo, per-pixel semantic labelling, lanemark labelling, instance segmentation, 3D car instance, high accurate location for every frame in various driving videos from multiple sites, cities and daytimes. For each task, it contains at lease 15x larger amount of images than SOTA datasets. To label such a complete dataset, we develop various tools and algorithms specified for each task to accelerate the labelling process, such as 3D-2D segment labeling tools, active labelling in videos etc. Depend on ApolloScape, we are able to develop algorithms jointly consider the learning and inference of multiple tasks. In this paper, we provide a sensor fusion scheme integrating camera videos, consumer-grade motion sensors (GPS/IMU), and a 3D semantic map in order to achieve robust self-localization and semantic segmentation for autonomous driving. We show that practically, sensor fusion and joint learning of multiple tasks are beneficial to achieve a more robust and accurate system. We expect our dataset and proposed relevant algorithms can support and motivate researchers for further development of multi-sensor fusion and multi-task learning in the field of computer vision.Comment: Version 4: Accepted by TPAMI. Version 3: 17 pages, 10 tables, 11 figures, added the application (DeLS-3D) based on the ApolloScape Dataset. Version 2: 7 pages, 6 figures, added comparison with BDD100K datase

    Salient Object Detection in the Deep Learning Era: An In-Depth Survey

    Full text link
    As an essential problem in computer vision, salient object detection (SOD) has attracted an increasing amount of research attention over the years. Recent advances in SOD are predominantly led by deep learning-based solutions (named deep SOD). To enable in-depth understanding of deep SOD, in this paper, we provide a comprehensive survey covering various aspects, ranging from algorithm taxonomy to unsolved issues. In particular, we first review deep SOD algorithms from different perspectives, including network architecture, level of supervision, learning paradigm, and object-/instance-level detection. Following that, we summarize and analyze existing SOD datasets and evaluation metrics. Then, we benchmark a large group of representative SOD models, and provide detailed analyses of the comparison results. Moreover, we study the performance of SOD algorithms under different attribute settings, which has not been thoroughly explored previously, by constructing a novel SOD dataset with rich attribute annotations covering various salient object types, challenging factors, and scene categories. We further analyze, for the first time in the field, the robustness of SOD models to random input perturbations and adversarial attacks. We also look into the generalization and difficulty of existing SOD datasets. Finally, we discuss several open issues of SOD and outline future research directions.Comment: Published on IEEE TPAMI. All the saliency prediction maps, our constructed dataset with annotations, and codes for evaluation are publicly available at \url{https://github.com/wenguanwang/SODsurvey

    Stereovision on GPU

    Get PDF
    Depth from stereo has traditionally been, and continues to be one of the most actively researched topics in computer vision. Recent development in this area has significantly advanced the state of the art in terms of quality. However, in terms of speed, these best stere

    Getting Robots Unfrozen and Unlost in Dense Pedestrian Crowds

    Full text link
    We aim to enable a mobile robot to navigate through environments with dense crowds, e.g., shopping malls, canteens, train stations, or airport terminals. In these challenging environments, existing approaches suffer from two common problems: the robot may get frozen and cannot make any progress toward its goal, or it may get lost due to severe occlusions inside a crowd. Here we propose a navigation framework that handles the robot freezing and the navigation lost problems simultaneously. First, we enhance the robot's mobility and unfreeze the robot in the crowd using a reinforcement learning based local navigation policy developed in our previous work~\cite{long2017towards}, which naturally takes into account the coordination between the robot and the human. Secondly, the robot takes advantage of its excellent local mobility to recover from its localization failure. In particular, it dynamically chooses to approach a set of recovery positions with rich features. To the best of our knowledge, our method is the first approach that simultaneously solves the freezing problem and the navigation lost problem in dense crowds. We evaluate our method in both simulated and real-world environments and demonstrate that it outperforms the state-of-the-art approaches. Videos are available at https://sites.google.com/view/rlslam

    Human Pose Estimation with Spatial Contextual Information

    Full text link
    We explore the importance of spatial contextual information in human pose estimation. Most state-of-the-art pose networks are trained in a multi-stage manner and produce several auxiliary predictions for deep supervision. With this principle, we present two conceptually simple and yet computational efficient modules, namely Cascade Prediction Fusion (CPF) and Pose Graph Neural Network (PGNN), to exploit underlying contextual information. Cascade prediction fusion accumulates prediction maps from previous stages to extract informative signals. The resulting maps also function as a prior to guide prediction at following stages. To promote spatial correlation among joints, our PGNN learns a structured representation of human pose as a graph. Direct message passing between different joints is enabled and spatial relation is captured. These two modules require very limited computational complexity. Experimental results demonstrate that our method consistently outperforms previous methods on MPII and LSP benchmark
    corecore