135,690 research outputs found

    The nonperturbative closed string tachyon vacuum to high level

    Full text link
    We compute the action of closed bosonic string field theory at quartic order with fields up to level ten. After level four, the value of the potential at the minimum starts oscillating around a nonzero negative value, in contrast with the proposition made in [5]. We try a different truncation scheme in which the value of the potential converges faster with the level. By extrapolating these values, we are able to give a rather precise value for the depth of the potential.Comment: 24 pages. v2: typos corrected, clarified extrapolation in scheme B, and added extrapolated tachyon and dilaton vev's at the end of Section

    Contact mechanics with adhesion: Interfacial separation and contact area

    Full text link
    We study the adhesive contact between elastic solids with randomly rough, self affine fractal surfaces. We present molecular dynamics (MD) simulation results for the interfacial stress distribution and the wall-wall separation. We compare the MD results for the relative contact area and the average interfacial separation, with the prediction of the contact mechanics theory of Persson. We find good agreement between theory and the simulation results. We apply the theory to the system studied by Benz et al. involving polymer in contact with polymer, but in this case the adhesion gives only a small modification of the interfacial separation as a function of the squeezing pressure.Comment: 5 pages, 4 figure

    A Faddeev Calculation for Pentaquark Θ+\Theta^+ in Diquark Picture with Nambu-Jona-Lasinio Type Interaction

    Full text link
    A Bethe-Salpeter-Faddeev (BSF) calculation is performed for the pentaquark Θ+\Theta^+ in the diquark picture of Jaffe and Wilczek in which Θ+\Theta^+ is a diquark-diquark-sˉ{\bar s} three-body system. Nambu-Jona-Lasinio (NJL) model is used to calculate the lowest order diagrams in the two-body scatterings of sˉD{\bar s}D and DDD D. With the use of coupling constants determined from the meson sector, we find that sˉD{\bar s}D interaction is attractive while DDDD interaction is repulsive, and there is no bound 12+\frac 12^+ pentaquark state. A bound pentaquark Θ+\Theta^+ can only be obtained with unphysically strong vector mesonic coupling constants.Comment: 4 pages, 4 figure

    Evidence for a ν=5/2\nu=5/2 Fractional Quantum Hall Nematic State in Parallel Magnetic Fields

    Full text link
    We report magneto-transport measurements for the fractional quantum Hall state at filling factor ν=\nu= 5/2 as a function of applied parallel magnetic field (B∣∣B_{||}). As B∣∣B_{||} is increased, the 5/2 state becomes increasingly anisotropic, with the in-plane resistance along the direction of B∣∣B_{||} becoming more than 30 times larger than in the perpendicular direction. Remarkably, the resistance anisotropy ratio remains constant over a relatively large temperature range, yielding an energy gap which is the same for both directions. Our data are qualitatively consistent with a fractional quantum Hall \textit{nematic} phase
    • …
    corecore