62 research outputs found

    Current treatment strategies targeting histone deacetylase inhibitors in acute lymphocytic leukemia: a systematic review

    Get PDF
    Acute lymphocytic leukemia is a hematological malignancy that primarily affects children. Long-term chemotherapy is effective, but always causes different toxic side effects. With the application of a chemotherapy-free treatment strategy, we intend to demonstrate the most recent results of using one type of epigenetic drug, histone deacetylase inhibitors, in ALL and to provide preclinical evidence for further clinical trials. In this review, we found that panobinostat (LBH589) showed positive outcomes as a monotherapy, whereas vorinostat (SAHA) was a better choice for combinatorial use. Preclinical research has identified chidamide as a potential agent for investigation in more clinical trials in the future. In conclusion, histone deacetylase inhibitors play a significant role in the chemotherapy-free landscape in cancer treatment, particularly in acute lymphocytic leukemia

    Fabrication of Metal-Semiconductor Heterostructures in Silicon Nanowires

    No full text
    The increasing demand for fossil fuels and the need to reduce greenhouse gases require clean energy sources and more efficient utilization of energy. Thermoelectric materials provide a means toward achieving these goals since they convert heat, including waste heat, directly into an electric potential difference. Metal-semiconductor heterostructures can work as Schottky barriers in thermoelectric materials to increase thermoelectric efficiency.In this project, nickel silicide phases were introduced into silicon nanowires (SiNWs) to build up the Schottky barrier. SiNW arrays were fabricated using a metal-assisted chemical process, creating SiNWs about 200 nm in diameter and 30ìm in length. Different methods were adopted for nickel deposition: electroless nickel deposition, electro nickel deposition, E-beam deposition, and thermal evaporation. The samples were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that depositing nickel on SiNWs in an aqueous solution without electricity is a simple way to deposit nickel particles, and the morphology of nickel particles depends on the concentration of the deposition bath. However, an aqueous solution will cause oxidation of the SiNWs and hinder the formation of nickel silicide. To solve this problem, depositing nickel on SiNWs in organic solutions inside an oxygen-free glove box is a way to prevent oxidation, and nickel can diffuse into silicon substrates easily via annealing when there no oxidation layer on the surface of SiNWs. The dominant phase formed in these samples is NiSi2 after being annealed at 650°C for one hour in a tube furnace

    The accumulation of active ingredients of Polygonatum cyrtonema Hua is associated with soil characteristics and bacterial community

    No full text
    IntroductionWith the increasing demand for health products derived from Polygonati rhizoma (PR), people begin to artificially plant Polygonatum cyrtonema Hua (P. cyrtonema) in the middle and lower reaches of the Yangtze River. To promote P. cyrtonema cultivation and increase farmers’ income, efforts are needed to understand the ways to obtain high-quality PR under artificial cultivation conditions.MethodsRhizomes of artificial planting P. cyrtonema and rhizosphere soils were collected across five regions in Zhejiang Province, China. Subsequently, the contents of the main active ingredients of P. cyrtonema and soil properties were analyzed, and both rhizosphere and endophytic bacteria of P. cyrtonema were detected by 16S rDNA sequencing. The relationship between the active ingredients and soil properties, and the dominant bacteria were investigated by correlation analysis.ResultsThe content of active ingredients of P. cyrtonema from the five regions varied significantly, especially polysaccharides and saponins. High-throughput sequencing demonstrated that Proteobacteria was the dominant bacterial phylum in all samples, and Burkholderia-Caballeronia-Paraburkholderia was the main endophytic bacterial genus in rhizome. In addition, the bacterial diversity and richness of rhizosphere soil samples were higher than those of rhizome samples. Soil physicochemical properties and enzyme activities were significantly different across regions, leading to notable variations in the community structures of rhizosphere and endophytic bacteria. Redundancy analysis (RDA) displayed that pH and urease (UE) were the major factors altering shifting rhizosphere bacteria community structure. Moreover, the composition and diversity of rhizome endophytic bacteria were principally affected by both soil physicochemical properties and soil enzyme activities. Soil properties and bacteria from rhizosphere soil and rhizome had a considerable impact on certain active ingredients in P. cyrtonema under artificial cultivation conditions after Pearson correlation analysis. Polysaccharides were significantly correlated with nutrient-rich soil and endophytic bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, Pseudomonas, Ralstonia, and Bacillus. However, flavonoids were associated with nutrient-poor soil. Saponins were positively correlated with OM and available phosphorous (AP) and were significantly negatively affected by rhizosphere bacterial communities.ConclusionThe study demonstrated that bacterial microorganisms were involved in the accumulation of active ingredients of P. cyrtonema together with soil physicochemical properties and enzyme activities, which provided a theoretical basis for the scientific and effective artificial cultivation of high-quality P. cyrtonema

    pH-Responsive metal-organic framework encapsulated gold nanoclusters with modulated release to enhance photodynamic therapy/chemotherapy in breast cancer

    No full text
    Gold nanoclusters (AuNCs) with an ultra-small size, as new inorganic photosensitizers, have been shown to be promising in photodynamic therapy (PDT), but their application has been restricted due to short blood circulation. It is therefore important to develop stimuli-responsive AuNC-based nanoprobes to achieve highly efficient PDT. Here, metal-organic framework (MOF, ZIF-8) encapsulated AuNCs (AuNCs@MOF) were synthesized, and then they were loaded with doxorubicin (DOX) to obtain pH-responsive nanoprobes (AuNCs@MOF-DOX) with modulated release for enhanced PDT/chemotherapy. In an acidic tumor microenvironment, the structure of ZIF-8 collapsed, accelerating the release of the AuNCs and DOX in the tumor cells, and enhancing the performance of PDT/chemotherapy. Under irradiation with a 670 nm laser, a large amount of singlet oxygen was generated, and the release rate of DOX increased to 77.1% at a pH value of 5.5. By single PDT and single chemotherapy, the tumors were only partially inhibited, but they completely disappeared using the combination of PDT and chemotherapy. The prepared pH-responsive AuNCs@MOF-DOX nanoprobes with modulated release showed excellent PDT/chemotherapy performance, and will be important bi-functional nanoprobes for synergistic therapy

    C2SPoint: A classification-to-saliency network for point cloud saliency detection

    No full text
    Point cloud saliency detection is an important technique that support downstream tasks in 3D graphics and vision, like 3D model simplification, compression, reconstruction and viewpoint selection. Existing approaches often rely on hand-crafted features and are only applicable to specific datasets. In this paper, we propose a novel weakly supervised classification network, called C2SPoint, which directly performs saliency detection on the point clouds. Unlike previous methods that require per-point saliency annotations, C2SPoint only requires category labels of the point clouds during training. The network consists of two branches: a Classification branch and a Saliency branch. The former branch is composed of two Adaptive Set Abstraction layers for feature extraction and a Saliency Transform layer for learning saliency knowledge from the classification network. The latter branch introduces a multi-scale point-cluster similarity matrix for propagating the cluster saliency to each point within it, resulting in the prediction of point-level saliency. Experimental results demonstrate the effectiveness of our method in point cloud saliency detection, with improvements of 2% in both AUC and NSS compared to state-of-the-art methods

    Temperature-Insensitive Refractive Index Sensor with Etched Microstructure Fiber

    No full text
    A Mach–Zehnder interferometer (MZI) based on an etched all-solid microstructure fiber (MOF) has been demonstrated. The MZI works on the basis of interference between the vibrant core and cladding modes in the MOF. The all-solid MOF has a heterostructure cladding composed of Ge-doped rod arrays and pure silica, and thus can support and propagate a vibrant cladding mode with a large mode area. When the outermost cladding of MOF is etched, the cladding mode becomes sensitive to the ambient refractive index (RI). The etched MOF can work as a sensing head for RI sensing. By comparing the interference spectra, the extinction ratio has remained stable at around 20 dB after the MOF was etched. The RI sensing characteristics of the MZI with an etched MOF have also been investigated. The results show that the RI sensitivity can reach up to 2183.6 nm/RIU with a low-temperature coefficient (<10 pm/°C)
    • …
    corecore