10,459 research outputs found

    A Discriminatively Learned CNN Embedding for Person Re-identification

    Full text link
    We revisit two popular convolutional neural networks (CNN) in person re-identification (re-ID), i.e, verification and classification models. The two models have their respective advantages and limitations due to different loss functions. In this paper, we shed light on how to combine the two models to learn more discriminative pedestrian descriptors. Specifically, we propose a new siamese network that simultaneously computes identification loss and verification loss. Given a pair of training images, the network predicts the identities of the two images and whether they belong to the same identity. Our network learns a discriminative embedding and a similarity measurement at the same time, thus making full usage of the annotations. Albeit simple, the learned embedding improves the state-of-the-art performance on two public person re-ID benchmarks. Further, we show our architecture can also be applied in image retrieval

    Occlusion Aware Unsupervised Learning of Optical Flow

    Full text link
    It has been recently shown that a convolutional neural network can learn optical flow estimation with unsupervised learning. However, the performance of the unsupervised methods still has a relatively large gap compared to its supervised counterpart. Occlusion and large motion are some of the major factors that limit the current unsupervised learning of optical flow methods. In this work we introduce a new method which models occlusion explicitly and a new warping way that facilitates the learning of large motion. Our method shows promising results on Flying Chairs, MPI-Sintel and KITTI benchmark datasets. Especially on KITTI dataset where abundant unlabeled samples exist, our unsupervised method outperforms its counterpart trained with supervised learning.Comment: CVPR 2018 Camera-read

    Lattice calculation of hadronic tensor of the nucleon

    Full text link
    We report an attempt to calculate the deep inelastic scattering structure functions from the hadronic tensor calculated on the lattice. We used the Backus-Gilbert reconstruction method to address the inverse Laplace transformation for the analytic continuation from the Euclidean to the Minkowski space.Comment: 8 pages, 5 figures; Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spai

    Dynkin Game of Convertible Bonds and Their Optimal Strategy

    Get PDF
    This paper studies the valuation and optimal strategy of convertible bonds as a Dynkin game by using the reflected backward stochastic differential equation method and the variational inequality method. We first reduce such a Dynkin game to an optimal stopping time problem with state constraint, and then in a Markovian setting, we investigate the optimal strategy by analyzing the properties of the corresponding free boundary, including its position, asymptotics, monotonicity and regularity. We identify situations when call precedes conversion, and vice versa. Moreover, we show that the irregular payoff results in the possibly non-monotonic conversion boundary. Surprisingly, the price of the convertible bond is not necessarily monotonic in time: it may even increase when time approaches maturity.Comment: 28 pages, 9 figures in Journal of Mathematical Analysis and Application, 201

    Variance Reduction and Cluster Decomposition

    Get PDF
    It is a common problem in lattice QCD calculation of the mass of the hadron with an annihilation channel that the signal falls off in time while the noise remains constant. In addition, the disconnected insertion calculation of the three-point function and the calculation of the neutron electric dipole moment with the θ\theta term suffer from a noise problem due to the V\sqrt{V} fluctuation. We identify these problems to have the same origin and the V\sqrt{V} problem can be overcome by utilizing the cluster decomposition principle. We demonstrate this by considering the calculations of the glueball mass, the strangeness content in the nucleon, and the CP violation angle in the nucleon due to the θ\theta term. It is found that for lattices with physical sizes of 4.5 - 5.5 fm, the statistical errors of these quantities can be reduced by a factor of 3 to 4. The systematic errors can be estimated from the Akaike information criterion. For the strangeness content, we find that the systematic error is of the same size as that of the statistical one when the cluster decomposition principle is utilized. This results in a 2 to 3 times reduction in the overall error.Comment: 7 pages, 5 figures, appendix added to address the systematic erro
    • …
    corecore