80 research outputs found

    A Fair Resource Allocation Algorithm for Data and Energy Integrated Communication Networks

    Get PDF
    With the rapid advancement of wireless network technologies and the rapid increase in the number of mobile devices, mobile users (MUs) have an increasing high demand to access the Internet with guaranteed quality-of-service (QoS). Data and energy integrated communication networks (DEINs) are emerging as a new type of wireless networks that have the potential to simultaneously transfer wireless energy and information via the same base station (BS). This means that a physical BS is virtualized into two parts: one is transferring energy and the other is transferring information. The former is called virtual energy base station (eBS) and the latter is named as data base station (dBS). One important issue in such setting is dynamic resource allocation. Here the resource concerned includes both power and time. In this paper, we propose a fair data-and-energy resource allocation algorithm for DEINs by jointly designing the downlink energy beamforming and a power-and-time allocation scheme, with the consideration of finite capacity batteries at MUs and power sensitivity of radio frequency (RF) to direct current (DC) conversion circuits. Simulation results demonstrate that our proposed algorithm outperforms the existing algorithms in terms of fairness, beamforming design, sensitivity, and average throughput.</jats:p

    Integrative genomic and transcriptomic analysis for pinpointing recurrent alterations of plant homeodomain genes and their clinical significance in breast cancer

    Get PDF
    A wide range of the epigenetic effectors that regulate chromatin modification, gene expression, genomic stability, and DNA repair contain structurally conserved domains called plant homeodomain (PHD) fingers. Alternations of several PHD finger-containing proteins (PHFs) due to genomic amplification, mutations, deletions, and translocations have been linked directly to various types of cancer. However, little is known about the genomic landscape and the clinical significance of PHFs in breast cancer. Hence, we performed a large-scale genomic and transcriptomic analysis of 98 PHF genes in breast cancer using TCGA and METABRIC datasets and correlated the recurrent alterations with clinicopathological features and survival of patients. Different subtypes of breast cancer had different patterns of copy number and expression for each PHF. We identified a subset of PHF genes that was recurrently altered with high prevalence, including PYGO2 (pygopus family PHD finger 2), ZMYND8 (zinc finger, MYND-type containing 8), ASXL1 (additional sex combs like 1) and CHD3 (chromodomain helicase DNA binding protein 3). Copy number increase and overexpression of ZMYND8 were more prevalent in Luminal B subtypes and were significantly associated with shorter survival of breast cancer patients. ZMYND8 was also involved in a positive feedback circuit of the estrogen receptor (ER) pathway, and the expression of ZMYND8 was repressed by the bromodomain and extra terminal (BET) inhibitor in breast cancer. Our findings suggest a promising avenue for future research—to focus on a subset of PHFs to better understand the molecular mechanisms and to identify therapeutic targets in breast cancer

    Evaluating Learning-to-Rank Models for Prioritizing Code Review Requests using Process Simulation

    Get PDF
    In large-scale, active software projects, one of the main challenges with code review is prioritizing the many Code Review Requests (CRRs) these projects receive. Prior studies have developed many Learning-to-Rank (LtR) models in support of prioritizing CRRs and adopted rich evaluation metrics to compare their performances. However, the evaluation was performed before observing the complex interactions between CRRs and reviewers, activities and activities in real-world code reviews. Such a pre-review evaluation provides few indications about how effective LtR models contribute to code reviews. This study aims to perform a post-review evaluation on LtR models for prioritizing CRRs. To establish the evaluation environment, we employ Discrete-Event Simulation (DES) paradigm-based Software Process Simulation Modeling (SPSM) to simulate real-world code review processes, together with three customized evaluation metrics. We develop seven LtR models and use the historical review orders of CRRs as baselines for evaluation. The results indicate that employing LtR can effectively help to accelerate the completion of reviewing CRRs and the delivery of qualified code changes. Among the seven LtR models, LambdaMART and AdaRank are particularly beneficial for accelerating completion and delivery, respectively. This study empirically demonstrates the effectiveness of using DES-based SPSM for simulating code review processes, the benefits of using LtR for prioritizing CRRs, and the specific advantages of several LtR models. This study provides new ideas for software organizations that seek to evaluate LtR models and other artificial intelligence-powered software techniques

    Study on Effects of salt stress on the Suberin Lamella of grapevine roots

    Get PDF
    Grape is one of the oldest tree species in the world which have a relatively high tolerance to salt stress. The function of Suberin Lamella is to control the transport of water and ions, which has a positive effect on salt tolerance. However, whether the suberin lamella of grape root is related to its salt-tolerance has not been revealed. In this study, suberin lamella in roots of two grape varieties, "Crimson seedless" and "1103p", were stained by FY0888. Results showed that salt stress induced the appearance and thickening of suberin lamella of grape root cortex. The induction effect was very obvious in salt-toerant "Crimson seedless", while the effect was weak in "1103P", indicating that the suberin lamella of grape was indeed involved in the salt tolerance of grape

    Prognostic and immunological significance of calcium-related gene signatures in renal clear cell carcinoma

    Get PDF
    Background: Calcium signaling is implicated in multiple processes including immune response that important in tumor progression. Kidney renal clear cell carcinoma (KIRC) is the most frequent histological type of renal cell carcinoma with up to a third of cases develop metastases. As a result of a lack of in-depth understanding of the mechanisms underlying KIRC, treatment options have been limited. Here, we aim to comprehensively investigate the landscape of Ca2+ channels, pumps and exchangers in KIRC patients.Methods: The mRNA expression profiles and gene variations of 58 calcium-related genes (CRGs) in KIRC patients and normal control cases were downloaded from TCGA database. CRGs-related risk score was constructed to quantify calcium patterns by using least absolute shrinkage and selection operator (LASSO) regression. The prognostic value, biological functions, immune landscape and therapeutic sensitivities based on CRGs-related risk score were then evaluated using multiple methods. Finally, key gene of CRGs was identified by weighted gene co-expression network analysis (WGCNA). TCGA-CPTAC, GSE53757 datasets, as well as human tissues were used for validation.Results: KIRC patients had significant differences in CRG expression, prognosis, and biological functions between two CRG clusters. CRGs-related risk score was then determined. The prognosis, tumor mutation burden, immune cell infiltration, immune checkpoints, and the response of targeted inhibitors were remarkably different between high and low CRGs-related risk subtypes. CRGs-related high-risk subtype was characterized by immunosuppressive microenvironment with poor prognosis. Meanwhile, several targeted drugs showed distinct sensitivity between CRGs-related risk subtypes. Finally, TRPM3 was identified as a key CRG based on risk score in KIRC patients. TRPM3 mRNA and protein expression were significantly lower in KIRC tumors than in normal controls. Low TRPM3 expression was associated with poor prognosis in KIRC patients.Conclusion: Our study highlighted the promising prognostic value of CRGs in KIRC tumors. The evaluation of CRGs-related risk score will contribute to predicting prognosis and clinical therapy in KIRC patients

    Hydrothermal Water Enabling One-Pot Transformation of Amines to Alcohols

    No full text
    While the amination of primary alcohols to amines is quite normal, the reverse reaction, deamination of amines to alcohols is rare. Recent advances achieve the transformation by catalytic multistep processes. We report a one-pot method that enables water nucleophilic attack of amines through the unique catalytic role of hydrothermal water. By achieving dehydrogenation of amines or building targeting group, we fulfilled amines transformation by subsequent reduction or direct deamination, which could further link to the utilization of naturally abundant glutamic acid. The method avoids oxidants, catalysts or multistep, thus achieves simple, green and selective transformation of primary amines

    Fabrication and Characterization of Alveolus-Like Scaffolds with Control of the Pore Architecture and Gas Permeability

    No full text
    The micrometer scale sac-like alveoli are the most important and essential unit for gas exchange in the lung. Thus, design and fabrication of scaffolds for alveoli regeneration by tissue engineering approach should meet a few topography and functional requests such as large surface area, flexibility, and high gas permeability to their native counterpart. Testing the gas permeability of scaffolds through a fast and simple technique is also highly demanded to assist new scaffold development. This study fabricated alveolus-like scaffolds with regular pore shape, high pore connectivity, and high porosity produced by inverse opal technique alongside randomly distrusted porous scaffolds by salt leaching technique from two different materials (polyurethane and poly(L-lactic acid)). The scaffold surface was modified by immobilization of VEGF. A facile and new technique based on the bubble meter principle enabling to measure the gas permeability of porous scaffolds conveniently has been developed specifically. The cellular response of the scaffolds was assessed by culturing with bone marrow mesenchymal stem cells and coculturing with lung epithelial NL20 and endothelial HUVECs. Our results showed that the newly designed gas permeability device provided rapid, nondestructive, reproducible, and accurate assessment of gas permeability of different scaffolds. The porous polyurethane scaffolds made by inverse opal method had much better gas permeability than other scaffolds used in this study. The cellular work indicated that with VEGF surface modification, polyurethane inverse opal scaffolds induced alveolus-like tissues and have promising application in lung tissue engineering

    EvaCRC: Evaluating Code Review Comments

    Full text link
    In code reviews, developers examine code changes authored by peers and provide feedback through comments. Despite the importance of these comments, no accepted approach currently exists for assessing their quality. Therefore, this study has two main objectives: (1) to devise a conceptual model for an explainable evaluation of review comment quality, and (2) to develop models for the automated evaluation of comments according to the conceptual model. To do so, we conduct mixed-method studies and propose a new approach: EvaCRC (Evaluating Code Review Comments). To achieve the first goal, we collect and synthesize quality attributes of review comments, by triangulating data from both authoritative documentation on code review standards and academic literature. We then validate these attributes using real-world instances. Finally, we establish mappings between quality attributes and grades by inquiring domain experts, thus defining our final explainable conceptual model. To achieve the second goal, EvaCRC leverages multi-label learning. To evaluate and refine EvaCRC, we conduct an industrial case study with a global ICT enterprise. The results indicate that EvaCRC can effectively evaluate review comments while offering reasons for the grades

    Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenerators

    No full text
    With the rapid development of the internet of things (IoT), sustainable self-powered wireless sensory systems and diverse wearable and implantable electronic devices have surged recently. Under such an opportunity, nanogenerators, which can convert continuous mechanical energy into usable electricity, have been regarded as one of the critical technologies for self-powered systems, based on the high sensitivity, flexibility, and biocompatibility of piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs). In this review, we have thoroughly analyzed the materials and structures of wearable and implantable PENGs and TENGs, aiming to make clear how to tailor a self-power system into specific applications. The advantages in TENG and PENG are taken to effectuate wearable and implantable human-oriented applications, such as self-charging power packages, physiological and kinematic monitoring, in vivo and in vitro healing, and electrical stimulation. This review comprehensively elucidates the recent advances and future outlook regarding the human body’s self-powered systems
    corecore