169 research outputs found

    Distributed Online Modified Greedy Algorithm for Networked Storage Operation under Uncertainty

    Full text link
    The integration of intermittent and stochastic renewable energy resources requires increased flexibility in the operation of the electric grid. Storage, broadly speaking, provides the flexibility of shifting energy over time; network, on the other hand, provides the flexibility of shifting energy over geographical locations. The optimal control of storage networks in stochastic environments is an important open problem. The key challenge is that, even in small networks, the corresponding constrained stochastic control problems on continuous spaces suffer from curses of dimensionality, and are intractable in general settings. For large networks, no efficient algorithm is known to give optimal or provably near-optimal performance for this problem. This paper provides an efficient algorithm to solve this problem with performance guarantees. We study the operation of storage networks, i.e., a storage system interconnected via a power network. An online algorithm, termed Online Modified Greedy algorithm, is developed for the corresponding constrained stochastic control problem. A sub-optimality bound for the algorithm is derived, and a semidefinite program is constructed to minimize the bound. In many cases, the bound approaches zero so that the algorithm is near-optimal. A task-based distributed implementation of the online algorithm relying only on local information and neighbor communication is then developed based on the alternating direction method of multipliers. Numerical examples verify the established theoretical performance bounds, and demonstrate the scalability of the algorithm.Comment: arXiv admin note: text overlap with arXiv:1405.778

    Online Modified Greedy Algorithm for Storage Control under Uncertainty

    Full text link
    This paper studies the general problem of operating energy storage under uncertainty. Two fundamental sources of uncertainty are considered, namely the uncertainty in the unexpected fluctuation of the net demand process and the uncertainty in the locational marginal prices. We propose a very simple algorithm termed Online Modified Greedy (OMG) algorithm for this problem. A stylized analysis for the algorithm is performed, which shows that comparing to the optimal cost of the corresponding stochastic control problem, the sub-optimality of OMG is bounded and approaches zero in various scenarios. This suggests that, albeit simple, OMG is guaranteed to have good performance in some cases; and in other cases, OMG together with the sub-optimality bound can be used to provide a lower bound for the optimal cost. Such a lower bound can be valuable in evaluating other heuristic algorithms. For the latter cases, a semidefinite program is derived to minimize the sub-optimality bound of OMG. Numerical experiments are conducted to verify our theoretical analysis and to demonstrate the use of the algorithm.Comment: 14 page version of a paper submitted to IEEE trans on Power System

    Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems

    Full text link
    Modern deep learning-based recommendation systems exploit hundreds to thousands of different categorical features, each with millions of different categories ranging from clicks to posts. To respect the natural diversity within the categorical data, embeddings map each category to a unique dense representation within an embedded space. Since each categorical feature could take on as many as tens of millions of different possible categories, the embedding tables form the primary memory bottleneck during both training and inference. We propose a novel approach for reducing the embedding size in an end-to-end fashion by exploiting complementary partitions of the category set to produce a unique embedding vector for each category without explicit definition. By storing multiple smaller embedding tables based on each complementary partition and combining embeddings from each table, we define a unique embedding for each category at smaller memory cost. This approach may be interpreted as using a specific fixed codebook to ensure uniqueness of each category's representation. Our experimental results demonstrate the effectiveness of our approach over the hashing trick for reducing the size of the embedding tables in terms of model loss and accuracy, while retaining a similar reduction in the number of parameters.Comment: 11 pages, 7 figures, 1 tabl

    Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction

    Full text link
    Click-Through Rate (CTR) prediction is one of the most important machine learning tasks in recommender systems, driving personalized experience for billions of consumers. Neural architecture search (NAS), as an emerging field, has demonstrated its capabilities in discovering powerful neural network architectures, which motivates us to explore its potential for CTR predictions. Due to 1) diverse unstructured feature interactions, 2) heterogeneous feature space, and 3) high data volume and intrinsic data randomness, it is challenging to construct, search, and compare different architectures effectively for recommendation models. To address these challenges, we propose an automated interaction architecture discovering framework for CTR prediction named AutoCTR. Via modularizing simple yet representative interactions as virtual building blocks and wiring them into a space of direct acyclic graphs, AutoCTR performs evolutionary architecture exploration with learning-to-rank guidance at the architecture level and achieves acceleration using low-fidelity model. Empirical analysis demonstrates the effectiveness of AutoCTR on different datasets comparing to human-crafted architectures. The discovered architecture also enjoys generalizability and transferability among different datasets
    • …
    corecore