109 research outputs found

    Generalizable Person Re-identification by Domain-Invariant Mapping Network

    Get PDF
    We aim to learn a domain generalizable person reidentification (ReID) model. When such a model is trained on a set of source domains (ReID datasets collected from different camera networks), it can be directly applied to any new unseen dataset for effective ReID without any model updating. Despite its practical value in real-world deployments, generalizable ReID has seldom been studied. In this work, a novel deep ReID model termed Domain-Invariant Mapping Network(DIMN) is proposed. DIMN is designed to learn a mapping between a person image and its identity classifier, i.e., it produces a classifier using a single shot. To make the model domain-invariant, we follow a meta-learning pipeline and sample a subset of source domain training tasks during each training episode. However, the model is significantly different from conventional meta-learning methods in that: (1) no model updating is required for the target domain, (2) different training tasks share a memory bank for maintaining both scalability and discrimination ability, and (3) it can be used to match an arbitrary number of identities in a target domain. Extensive experiments on a newly proposed large-scale ReID domain generalization benchmark show that our DIMN significantly outperforms alternative domain generalization or meta-learning methods

    Detection and differentiation of Borrelia burgdorferi sensu lato in ticks collected from sheep and cattle in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lyme disease caused by <it>Borrelia burgdorferi </it>sensu lato complex is an important endemic zoonosis whose distribution is closely related to the main ixodid tick vectors. In China, isolated cases of Lyme disease infection of humans have been reported in 29 provinces. Ticks, especially ixodid ticks are abundant and a wide arrange of <it>Borrelia </it>natural reservoirs are present. In this study, we developed a reverse line blot (RLB) to identify <it>Borrelia </it>spp. in ticks collected from sheep and cattle in 7 Provinces covering the main extensive livestock regions in China.</p> <p>Results</p> <p>Four species-specific RLB oligonucleotide probes were deduced from the spacer region between the 5S-23S rRNA gene, along with an oligonucleotide probe which was common to all. The species specific probes were shown to discriminate between four genomic groups of <it>B. burgdorferi </it>sensu lato i.e. <it>B. burgdorferi </it>sensu stricto, <it>B. garinii, B. afzelii</it>, and <it>B. valaisiana</it>, and to bind only to their respective target sequences, with no cross reaction to non target DNA. Furthermore, the RLB could detect between 0.1 pg and 1 pg of <it>Borrelia </it>DNA.</p> <p>A total of 723 tick samples (<it>Haemaphysalis, Boophilus, Rhipicephalus </it>and <it>Dermacentor</it>) from sheep and cattle were examined with RLB, and a subset of 667 corresponding samples were examined with PCR as a comparison. The overall infection rate detected with RLB was higher than that of the PCR test.</p> <p>The infection rate of <it>B. burgdoreri </it>sensu stricto was 40% in south areas; while the <it>B. garinii infection rate </it>was 40% in north areas. The highest detection rates of <it>B. afzelii </it>and <it>B. valaisiana </it>were 28% and 22%, respectively. Mixed infections were also found in 7% of the ticks analyzed, mainly in the North. The proportion of <it>B. garinii </it>genotype in ticks was overall highest at 34% in the whole investigation area.</p> <p>Conclusion</p> <p>In this study, the RLB assay was used to detect <it>B. burgdorferi </it>sensu lato in ticks collected from sheep and cattle in China. The results showed that <it>B. burdorferi senso stricto </it>and <it>B. afzelii </it>were mainly distributed in the South; while <it>B. garinii </it>and <it>B. valaisiana </it>were dominant in the North. <it>Borrelia </it>spirochaetes were detected in <it>Rhipicephalus </it>spp for the first time. It is suggested that the <it>Rhipicephalus </it>spps might play a role in transmitting <it>Borrelia </it>spirochaetes.</p

    Altered Brain Function in Treatment-Resistant and Non-treatment-resistant Depression Patients: A Resting-State Functional Magnetic Resonance Imaging Study

    Get PDF
    ObjectiveIn this study, we used amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) to observe differences in local brain functional activity and its characteristics in patients with treatment-resistant depression (TRD) and non-treatment-resistant depression (nTRD), and to explore the correlation between areas of abnormal brain functional activity and clinical symptoms.MethodThirty-seven patients with TRD, 36 patients with nTRD, and 35 healthy controls (HCs) were included in resting-state fMRI scans. ALFF and ReHo were used for image analysis and further correlation between abnormal brain regions and clinical symptoms were analyzed.ResultsANOVA revealed that the significantly different brain regions of ALFF and ReHo among the three groups were mainly concentrated in the frontal and temporal lobes. Compared with the nTRD group, the TRD group had decreased ALFF in the left/right inferior frontal triangular gyrus, left middle temporal gyrus, left cuneus and bilateral posterior lobes of the cerebellum, and increased ALFF in the left middle frontal gyrus and right superior temporal gyrus, and the TRD group had decreased ReHo in the left/right inferior frontal triangular gyrus, left middle temporal gyrus, and increased ReHo in the right superior frontal gyrus. Compared with the HC group, the TRD group had decreased ALFF/ReHo in both the right inferior frontal triangular gyrus and the left middle temporal gyrus. Pearson correlation analysis showed that both ALFF and ReHo values in these abnormal brain regions were positively correlated with HAMD-17 scores (P &lt; 0.05).ConclusionAlthough the clinical symptoms were similar in the TRD and nTRD groups, abnormal neurological functional activity were present in some of the same brain regions. Compared with the nTRD group, ALFF and ReHo showed a wider range of brain area alterations and more complex neuropathological mechanisms in the TRD group, especially in the inferior frontal triangular gyrus of the frontal lobe and the middle temporal gyrus of the temporal lobe
    corecore