2 research outputs found

    Design of an Electric Motor Transmission System Without Friction Synchronization

    No full text
    Copyright © 2019 ASME. This paper investigates the design of a new transmission system without a friction synchronizer for high-performance hybrid vehicles. Manual and automated manual transmission systems traditionally use friction synchronizers to facilitate smooth transitions during a gearshift, ensuring speed matching and proper engagement of the gears. Active position sensing technology for dogteeth is being developed, along with the potential of speed matching using electric motors, eliminating the need for the friction synchronizer. However, in removing these friction synchronizer components, significant shock could be introduced to the transmission system with speed or position errors during a shift. This paper proposes a solution through a gear system that utilizes a face mesh design, torsional springs, and alternating teeth height. A prototype of this design was created and successfully tested as a proof of concept for a transmission system, which has the potential to improve hybrid, automated manual transmission design

    Manuka honey microneedles for enhanced wound healing and the prevention and/or treatment of Methicillin-resistant Staphylococcus aureus (MRSA) surgical site infection

    No full text
    © 2020, The Author(s). Manuka honey (MH) is currently used as a wound treatment and suggested to be effective in Methicillin-resistant Staphylococcus aureus (MRSA) elimination. We sought to optimize the synthesis of MH microneedles (MHMs) while maintaining the MH therapeutic effects. MHMs were synthesized using multiple methods and evaluated with in vitro assays. MHMs demonstrated excellent bactericidal activity against MRSA at concentrations ≥ 10% of honey, with vacuum-prepared honey appearing to be the most bactericidal, killing bacterial concentrations as high as 8 × 107 CFU/mL. The wound-healing assay demonstrated that, at concentrations of 0.1%, while the cooked honey had incomplete wound closure, the vacuum-treated honey trended towards faster wound closure. In this study, we demonstrate that the method of MHM synthesis is crucial to maintaining MH properties. We optimized the synthesis of MHMs and demonstrated their potential utility in the treatment of MRSA infections as well as in wound healing. This is the first report of using MH as a substrate for the formation of dissolvable microneedles. This data supports the need for further exploration of this new approach in a wound-healing model and opens the door for the future use of MH as a component of microneedle scaffolds
    corecore