2,191 research outputs found

    Weakly-supervised Caricature Face Parsing through Domain Adaptation

    Full text link
    A caricature is an artistic form of a person's picture in which certain striking characteristics are abstracted or exaggerated in order to create a humor or sarcasm effect. For numerous caricature related applications such as attribute recognition and caricature editing, face parsing is an essential pre-processing step that provides a complete facial structure understanding. However, current state-of-the-art face parsing methods require large amounts of labeled data on the pixel-level and such process for caricature is tedious and labor-intensive. For real photos, there are numerous labeled datasets for face parsing. Thus, we formulate caricature face parsing as a domain adaptation problem, where real photos play the role of the source domain, adapting to the target caricatures. Specifically, we first leverage a spatial transformer based network to enable shape domain shifts. A feed-forward style transfer network is then utilized to capture texture-level domain gaps. With these two steps, we synthesize face caricatures from real photos, and thus we can use parsing ground truths of the original photos to learn the parsing model. Experimental results on the synthetic and real caricatures demonstrate the effectiveness of the proposed domain adaptation algorithm. Code is available at: https://github.com/ZJULearning/CariFaceParsing .Comment: Accepted in ICIP 2019, code and model are available at https://github.com/ZJULearning/CariFaceParsin

    Set voltage distribution stabilized by constructing an oxygen reservoir in resistive random access memory

    Get PDF
    In this letter, the instability mechanism of RRAM was investigated, and a technique was developed to stabilize the distribution of high resistance state (HRS) and better concentrate the SET voltage. In previous research, we found that an interface-type switching characteristic was observed on the I-V curve beneath the filament-type switching behavior, owing to the oxygen accumulation effect. In this letter, this interface-type switching characteristic is used to fit the natural distribution of HRS for an analysis of the instability mechanism. According to the results, the reason for the HRS distribution is the accumulation of extra oxygen ions which are left over from a lower degree of oxygen and oxygen vacancy recombination during the reset process. We propose a solution which creates an extra oxygen reservoir by changing the surface topography of the electrode to store the surplus oxygen ions from the reset process, eliminating the accumulation effect, and indeed improving stability. Please click Additional Files below to see the full abstract

    Using Hybrid Angle/Distance Information for Distributed Topology Control in Vehicular Sensor Networks

    Get PDF
    In a vehicular sensor network (VSN), the key design issue is how to organize vehicles effectively, such that the local network topology can be stabilized quickly. In this work, each vehicle with on-board sensors can be considered as a local controller associated with a group of communication members. In order to balance the load among the nodes and govern the local topology change, a group formation scheme using localized criteria is implemented. The proposed distributed topology control method focuses on reducing the rate of group member change and avoiding the unnecessary information exchange. Two major phases are sequentially applied to choose the group members of each vehicle using hybrid angle/distance information. The operation of Phase I is based on the concept of the cone-based method, which can select the desired vehicles quickly. Afterwards, the proposed time-slot method is further applied to stabilize the network topology. Given the network structure in Phase I, a routing scheme is presented in Phase II. The network behaviors are explored through simulation and analysis in a variety of scenarios. The results show that the proposed mechanism is a scalable and effective control framework for VSNs
    • …
    corecore