49 research outputs found

    Label-Free Phenotypic Profiling Identified D-Luciferin as a GPR35 Agonist

    Get PDF
    Fluorescent and luminescent probes are essential to both in vitro molecular assays and in vivo imaging techniques, and have been extensively used to measure biological function. However, little is known about the biological activity, thus potential interferences with the assay results, of these probe molecules. Here we show that D-luciferin, one of the most widely used bioluminescence substrates, is a partial agonist for G protein-coupled receptor-35 (GPR35). Label-free phenotypic profiling using dynamic mass redistribution (DMR) assays showed that D-luciferin led to a DMR signal in native HT-29 cells, whose characteristics are similar to those induced by known GPR35 agonists including zaprinast and pamoic acid. DMR assays further showed that D-luciferin is a partial agonist competitive to several known GPR35 agonists and antagonists. D-luciferin was found to cause the phosphorylation of ERK that was suppressed by known GPR35 antagonists, and also result in β-arrestin translocation signal but with low efficacy. These results not only suggest that D-luciferin is a partial agonist of GPR35, but also will evoke careful interpretation of biological data obtained using molecular and in vivo imaging assays when these probe molecules are used

    Hydrothermal Synthesis of PbO 2

    No full text
    PbO2 nanoparticles were prepared using a simple hydrothermal method with β-PbO as precursor and ammonium peroxydisulfate as oxidant. During the hydrothermal condition with ammonium peroxydisulfate, the formed hydroxyl radical has played a key role in the oxidation of β-PbO to PbO2. The size of as-prepared PbO2 nanoparticles was in the range of 25–50 nm. Reduced graphene oxide (RGO) was successfully prepared by the simple reduction reaction of graphene oxide by sodium borohydride and the obtained RGO was then incorporated into the PbO2 nanoparticles. The surface of ITO electrode was modified with the as-prepared PbO2/RGO nanocomposite. The constructed PbO2/RGO/ITO electrode was subsequently applied for the catalytic degradation of cationic red X-GRL which was an azo dye in wastewater. The effects of reaction time, applied current density, and initial concentration of dye on the color removal and COD removal were thoroughly investigated. All results demonstrated that the degradation performance of the electrode modified with PbO2/RGO nanocomposite was extremely excellent

    Effects of Dynamic IMU-to-Segment Misalignment Error on 3-DOF Knee Angle Estimation in Walking and Running

    No full text
    The inertial measurement unit (IMU)-to-segment (I2S) alignment is an important part of IMU-based joint angle estimation, and the accurate estimation of the three degree of freedom (3-DOF) knee angle can provide practical support for the evaluation of motions. In this paper, we introduce a dynamic weight particle swarm optimization (DPSO) algorithm with crossover factor based on the joint constraint to obtain the dynamic alignment vectors of I2S, and use them to perform the quaternion-based 3-DOF knee angle estimation algorithm. The optimization algorithm and the joint angle estimation algorithm were evaluated by comparing with the optical motion capture system. The range of 3-DOF knee angle root mean square errors (RMSEs) is 1.6°–5.9° during different motions. Furthermore, we also set up experiments of human walking (3 km/h), jogging (6 km/h) and ordinary running (9 km/h) to investigate the effects of dynamic I2S misalignment errors on 3-DOF knee angle estimation during different motions by artificially adding errors to I2S alignment parameters. The results showed differences in the effects of I2S misalignment errors on the estimation of knee abduction, internal rotation and flexion, which indicate the differences in knee joint kinematics among different motions. The IMU to thigh misalignment error has the greatest effect on the estimation of knee internal rotation. The effect of IMU to thigh misalignment error on the estimation of knee abduction angle becomes smaller and then larger during the two processes of switching from walking to jogging and then speeding up to ordinary running. The effect of IMU to shank misalignment error on the estimation of knee flexion angle is numerically the largest, while the standard deviation (SD) is the smallest. This study can provide support for future research on the accuracy of 3-DOF knee angle estimation during different motions

    Mechanical Behaviors and Structure Safety of a Tunnel Crossing a Water-Rich Fault Fracture Zone—A Case Study

    No full text
    To study the potential disasters caused by tunnels crossing water-abundant fault areas, this study takes the Jinyunshan Tunnel as an example, and studies the groundwater flow law between different rock layers, the interaction between surrounding rock hydrostatic pressure and soil pressure, and the mechanical features and safety of the lining during construction by combining field tests and finite element simulation analysis. The results show that the displacement change rate of the tunnel vault reaches 2.8 mm/d, and the maximum earth pressure and hydrostatic pressure are 2.3 MPa and 1.15 MPa, respectively, both at the bottom of the tunnel in section II. When the tunnel enters the fault fracture zone from the V surrounding rock, the bending moment of the lining increases by 222.78% at the left haunch and 60.87% at the bottom of the right wall. The axial force of the right spandrel increases by 2579.2%, and the left spandrel increases by 221.18%. The safety factor of the two sections is greater than 2.4, indicating that the overall structure is in a safe state, but the safety factor of the second right shoulder is 2.54, which is close to the safety threshold of 2.4. The research results provide a basis for the safety design and construction safety of tunnels through water-rich sections in similar fault fracture zones, and provide a reference for reducing groundwater loss and protecting ecological vegetation

    Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants

    No full text
    Cadmium, a high toxic heavy metal, is one of the most serious contaminants in soil and a potential threat to plant growth and human health. Amino acid metabolism has the central role in heavy metal stress resistance of plants. In this paper, a pot experiment was carried out to study the effects of different concentrations of cadmium (0, 3, 6, 12, 30 mg kg(-1)) on the growth, Cd accumulation and amino acid metabolism in two Compositae plants (Ageratum conyzoides L. and Crassocephalwn crepidioides). The results showed that under cadmium stress, C. crepidioides accumulated more Cd in its shoot and was tolerant to Cd, whereas its low Cd-accumulating relative, A. conyzoides, suffered reduced growth. The Cd content in the aerial part of C. crepidioides exceeded the threshold of Cd-hyperaccumulator. Furthermore, the bioaccumulation factor (BCF) and biological transfer factor (BTF) values for Cd in C. crepidioides were > 1. Thus, C. crepidioides can be regarded as Cd-hyperaccumulator. The comparison between both studied plants indicated that Cd stress resulted in a differential but coordinated response of amino acid levels, which are playing a significant role in plant adaptation to Cd stress. Glu, Gln, Asp, Asn, Gaba, Val and Ala dominated the major amino acids. Higher Cd tolerance and Cd accumulation in C. crepidioides was associated with greater accumulation of free amino acids, especially for Gln and Asn, in C. crepidioides than in A. conyzoides
    corecore