252 research outputs found

    Improving Masked Autoencoders by Learning Where to Mask

    Full text link
    Masked image modeling is a promising self-supervised learning method for visual data. It is typically built upon image patches with random masks, which largely ignores the variation of information density between them. The question is: Is there a better masking strategy than random sampling and how can we learn it? We empirically study this problem and initially find that introducing object-centric priors in mask sampling can significantly improve the learned representations. Inspired by this observation, we present AutoMAE, a fully differentiable framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process. In this way, our approach can adaptively find patches with higher information density for different images, and further strike a balance between the information gain obtained from image reconstruction and its practical training difficulty. In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.Comment: 14 pages, 8 figures. This paper has been accepted by PRCV 202

    Resource utilization of microalgae from biological soil crusts::biodiesel production associated with desertification control

    Get PDF
    With the continuing consumption of resources and increasingly prominent environmental issues, microalgal resource utilization has received extensive attention. In this study, based on the microalgal investigation in desert biological soil crusts (BSCs) using pyrosequencing technology, the cultivated crust microalgae were further isolated in order to obtain high quality microalgae for resource utilization. The results showed that with crust development and succession, microalgal diversity gradually decreased, including the number of operational taxonomic units (OTUs) and genus, although Microcokus always was the dominant genera. Pyrosequencing obtained 630 OTUs of cyanobacteria, 25 OTUs of green algae and 9 OTUs of diatom; however, part of cultivated microalgae still could not yet be detected due to the DNA extraction preferences and errors caused by PCR amplification. After isolation, four strains were purified and cultivated, including two filamentous cyanobacteria Microcoleus vaginatus BSC-06 and Scytonema javanicum BSC-39, and two unicellular green algae Chlorella sp. BSC-24 and Monoraphidium dybowskii BSC-81. The two green algae grew fast (> 250 mg L-1 d(-1)), and achieved high lipid productivity up to 75-85 mg L-1 d(-1), with lipid content of 28.7-39.0%, thus was considered as promising feedstock for biodiesel production. In addition, the two crust cyanobacteria could be used to construct artificial cyanobacterial soil crusts in desertification control, although their biomass accumulation was not as high as that in the green algae. Ultimately, combining biodiesel production with desertification control would not only improve desert environments, but also provide ideal places for the local microalgal resource exploitation, further promoting desert socioeconomic development

    Construction of stable Ta3N5/g-C3N4 metal/non-metal nitride hybrids with enhanced visible-light photocatalysis

    Get PDF
    In this paper, a novel Ta3N5/g-C3N4 metal/non-metal nitride hybrid was successfully synthesized by a facile impregnation method. The photocatalytic activity of Ta3N5/g-C3N4 hybrid nitrides was evaluated by the degradation of organic dye rhodamine B (RhB) under visible light irradiation, and the result indicated that all Ta3N5/g-C3N4 samples exhibited distinctly enhanced photocatalytic activities for the degradation of RhB than pure g-C3N4. The optimal Ta3N5/g-C3N4 composite sample, with Ta3N5 mass ratio of 2%, demonstrated the highest photocatalytic activity, and its degradation rate constant was 2.71 times as high as that of pure g-C3N4. The enhanced photocatalytic activity of this Ta3N5/g-C3N4 metal/metal-free nitride was predominantly attributed to the synergistic effect which increased visible-light absorption and facilitated the efficient separation of photoinduced electrons and holes. The Ta3N5/g-C3N4 hybrid nitride exhibited excellent photostability and reusability. The possible mechanism for improved photocatalytic performance was proposed. Overall, this work may provide a facile way to synthesize the highly efficient metal/metal-free hybrid nitride photocatalysts with promising applications in environmental purification and energy conversion

    Metabolomic and transcriptomic analyses reveal the effects of grafting on blood orange quality

    Get PDF
    IntroductionBlood orange (Citrus sinensis L.) is a valuable source of nutrition because it is enriched in anthocyanins and has high organoleptic properties. Grafting is commonly used in citriculture and has crucial effects on various phenotypes of the blood orange, including its coloration, phenology, and biotic and abiotic resistance. Still, the underlying genetics and regulatory mechanisms are largely unexplored.MethodsIn this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at eight developmental stages of the lido blood orange cultivar (Citrus sinensis L. Osbeck cv. Lido) grafted onto two rootstocks.Results and discussionThe Trifoliate orange rootstock provided the best fruit quality and flesh color for Lido blood orange. Comparative metabolomics suggested significant differences in accumulation patterns of metabolites and we identified 295 differentially accumulated metabolites. The major contributors were flavonoids, phenolic acids, lignans and coumarins, and terpenoids. Moreover, transcriptome profiling resulted in the identification of 4179 differentially expressed genes (DEGs), and 54 DEGs were associated with flavonoids and anthocyanins. Weighted gene co-expression network analysis identified major genes associated to 16 anthocyanins. Furthermore, seven transcription factors (C2H2, GANT, MYB-related, AP2/ERF, NAC, bZIP, and MYB) and five genes associated with anthocyanin synthesis pathway (CHS, F3H, UFGT, and ANS) were identified as key modulators of the anthocyanin content in lido blood orange. Overall, our results revealed the impact of rootstock on the global transcriptome and metabolome in relation to fruit quality in lido blood orange. The identified key genes and metabolites can be further utilized for the quality improvement of blood orange varieties

    National survey on current situation of critical value reporting in 973 laboratories in China

    Get PDF
    Introduction: The aim of the study was to investigate the state-of-the-art of the performance of critical value reporting and provide recommendations for laboratories setting critical value reporting time frames. Materials and methods: The National Centre for Clinical Laboratories in China initiated a critical value reporting investigation in 2015. A questionnaire related to critical value reporting policy was sent to 1589 clinical laboratories in China online. The questionnaire consisted of a set of questions related to critical value reporting policy and a set of questions related to timeliness of critical value reporting. The survey data were collected between March and April 2015. Results: A total survey response rate was 61.2%. The critical value unreported rate, unreported timely rate, and clinical unacknowledged rate of more than half of participants were all 0.0%. More than 75.0% of participants could report half of critical values to clinicians within 20 minutes and could report 90.0% of critical values to clinicians within 25 minutes (from result validation to result communication to the clinician). The median of target critical value reporting time was 15 minutes. “Reporting omission caused by laboratory staff”, “communications equipment failure to connect”, and “uncompleted application form without contact information of clinician” were the three major reasons for unreported critical value. Conclusions: The majority of laboratories can report critical values to responsible clinical staff within 25 minutes. Thus, this value could be recommended as suitable critical value reporting time frame for biochemistry laboratories in China. However, careful monitoring of the complete reporting process and improvement of information systems should ensure further improvement of critical value reporting timeliness

    Preparation and Characterization of C@Fe3O4 Supported Pd Magnetic Nanoparticles for Degradation of Dye Wastewater

    Get PDF
    The core-shell structure Fe3O4@C magnetic nanoparticles were synthesized with superparamagnetic Fe3O4 nanosphere as a magnetic core, and soluble starch resin as a carbon source via a solvothermal method. Silica-iron oxide and Fe3O4@C carriers with a core-shell structure were prepared by carbonization of organic material on the surface of Fe3O4 nanoparticles, Fe3O4@C supported Pd were processed into magnetic nano-catalysts with core-shell structure, and their catalytic properties were investigated. The resulting environmentally friendly magnetic material can be used to degrade dye wastewater. The structure of magnetic nanoparticles was characterized using TEM, XRD and VSM. The effects of preparation conditions in the structure of the Fe3O4@C magnetic nanoparticles were taken out. The results indicate that from XRD, the magnetic nano particles Fe3O4@C synthesized of carbon sources have amorphous carbon diffraction peak except for all the characteristic peaks of Fe3O4. The saturation magnetization Fe3O4, Fe3O4@SiO2 and Fe3O4@C – 59.14 emu/g, 49.12 emu/g and 27.95 emu/g, respectively

    Genome-wide comparative analysis of digital gene expression tag profiles during maize ear development

    Get PDF
    Background: Development of the maize (Zea mays L.) female inflorescence (ear) has an important impact on corn yield. However, the molecular mechanisms underlying maize ear development are poorly understood. Results: We profiled and analyzed gene expression of the maize ear at four developmental stages: elongation phase (I), spikelet differentiation phase (II), floret primordium differentiation phase (III), and floret organ differentiation phase (IV). Based on genome-wide profile analysis, we detected differential mRNA of maize genes. Among the ~6,800 differentially expressed genes (DEGs), 3,325 genes were differentially expressed in stage II, 3,765 genes in III, and 1,698 genes in IV, compared to its previous adjacent stages, respectively. Furthermore, some of DEGs were predicted to be potential candidates in maize ear development, such as AGAMOUS (GRMZM2G052890) and ATFP3 (GRMZM2G155281). Meanwhile, some genes were well-known annotated to the mutants during maize inflorescence development such as compact plant2 (ct2), zea AGAMOUS homolog1 (zag1), bearded ear (bde), and silky1 (si1). Some DEGs were predicted targets of microRNAs such as microRNA156. K-means clustering revealed that the DEGs showed 18 major expression patterns. Thirteen transcriptional factors from 10 families were differentially expressed across three comparisons of adjacent stages (II vs. I, III vs. II, IV vs. III). Antisense transcripts were widespread during all four stages, and might play important roles in maize ear development. Finally, we randomly selected 32 DEGs to validate their expression patterns using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The results were consistent with those from Solexa sequencing. Conclusions: DEGs technique had shown an advantage in detecting candidates, and some transcription factors during maize ear development. RT-PCR data were consistent with our sequencing data and supplied additional information on ear developmental processes. These results provide a molecular foundation for future research on maize ear development

    Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing

    Get PDF
    Background In plants, microRNAs (miRNAs) are endogenous ~22 nt RNAs that play important regulatory roles in many aspects of plant biology, including metabolism, hormone response, epigenetic control of transposable elements, and stress response. Extensive studies of miRNAs have been performed in model plants such as rice and Arabidopsis thaliana. In maize, most miRNAs and their target genes were analyzed and identified by clearly different treatments, such as response to low nitrate, salt and drought stress. However, little is known about miRNAs involved in maize ear development. The objective of this study is to identify conserved and novel miRNAs and their target genes by combined small RNA and degradome sequencing at four inflorescence developmental stages. Results We used deep-sequencing, miRNA microarray assays and computational methods to identify, profile, and describe conserved and non-conserved miRNAs at four ear developmental stages, which resulted in identification of 22 conserved and 21-maize-specific miRNA families together with their corresponding miRNA*. Comparison of miRNA expression in these developmental stages revealed 18 differentially expressed miRNA families. Finally, a total of 141 genes (251 transcripts) targeted by 102 small RNAs including 98 miRNAs and 4 ta-siRNAs were identified by genomic-scale high-throughput sequencing of miRNA cleaved mRNAs. Moreover, the differentially expressed miRNAs-mediated pathways that regulate the development of ears were discussed. Conclusions This study confirmed 22 conserved miRNA families and discovered 26 novel miRNAs in maize. Moreover, we identified 141 target genes of known and new miRNAs and ta-siRNAs. Of these, 72 genes (117 transcripts) targeted by 62 differentially expressed miRNAs may attribute to the development of maize ears. Identification and characterization of these important classes of regulatory genes in maize may improve our understanding of molecular mechanisms controlling ear development
    • …
    corecore