2,178 research outputs found
Face Attribute Prediction Using Off-the-Shelf CNN Features
Predicting attributes from face images in the wild is a challenging computer
vision problem. To automatically describe face attributes from face containing
images, traditionally one needs to cascade three technical blocks --- face
localization, facial descriptor construction, and attribute classification ---
in a pipeline. As a typical classification problem, face attribute prediction
has been addressed using deep learning. Current state-of-the-art performance
was achieved by using two cascaded Convolutional Neural Networks (CNNs), which
were specifically trained to learn face localization and attribute description.
In this paper, we experiment with an alternative way of employing the power of
deep representations from CNNs. Combining with conventional face localization
techniques, we use off-the-shelf architectures trained for face recognition to
build facial descriptors. Recognizing that the describable face attributes are
diverse, our face descriptors are constructed from different levels of the CNNs
for different attributes to best facilitate face attribute prediction.
Experiments on two large datasets, LFWA and CelebA, show that our approach is
entirely comparable to the state-of-the-art. Our findings not only demonstrate
an efficient face attribute prediction approach, but also raise an important
question: how to leverage the power of off-the-shelf CNN representations for
novel tasks.Comment: In proceeding of 2016 International Conference on Biometrics (ICB
Leveraging Mid-Level Deep Representations For Predicting Face Attributes in the Wild
Predicting facial attributes from faces in the wild is very challenging due
to pose and lighting variations in the real world. The key to this problem is
to build proper feature representations to cope with these unfavourable
conditions. Given the success of Convolutional Neural Network (CNN) in image
classification, the high-level CNN feature, as an intuitive and reasonable
choice, has been widely utilized for this problem. In this paper, however, we
consider the mid-level CNN features as an alternative to the high-level ones
for attribute prediction. This is based on the observation that face attributes
are different: some of them are locally oriented while others are globally
defined. Our investigations reveal that the mid-level deep representations
outperform the prediction accuracy achieved by the (fine-tuned) high-level
abstractions. We empirically demonstrate that the midlevel representations
achieve state-of-the-art prediction performance on CelebA and LFWA datasets.
Our investigations also show that by utilizing the mid-level representations
one can employ a single deep network to achieve both face recognition and
attribute prediction.Comment: In proceedings of 2016 International Conference on Image Processing
(ICIP
- …