180 research outputs found

    The tribological properties of zinc borate ultrafine powder as a lubricant additive in sunflower oil

    Get PDF
    This paper presents an investigation on the tribological properties of zinc borate ultrafine powder employed as a lubricant additive in sunflower oil. The stable dispersions of 0.5 wt%, 1 wt% and 2 wt% zinc borate ultrafine powder in sunflower oil were achieved by using an ultrasonic homogeniser. Both a 4-ball tester and a pin-on-disc tester were employed to evaluate the anti-wear and friction reduction capabilities of zinc borate ultrafine powder. Tribo-films with dark colour were generated on the worn surfaces and showed a good contrast with the substrate. The worn surface with different morphologies reflected as the colour alterations on the worn surface were observed when different lubricants were applied. The morphology and elemental analysis of the worn surfaces were studied using atomic force microscopy (AFM) and scanning electronic microscopy (SEM). Mechanical properties of the tribo-films and substrates were studied with a nano-indentation tester. Test results suggest that tribo-films generated on the worn surface have a relatively low hardness compared with the steel substrate. The substrates on the worn surfaces lubricated in sunflower oil with the powder demonstrated higher hardness than that of the substrate lubricated with pure sunflower oil due to the possible tribo-chemical reaction between the zinc borate additive and substrate. The combination of sunflower oil with 0.5% zinc borate ultrafine powder has delivered the most balanced performance in friction and wear reduction. This study has demonstrated the possibility of application of this industrially applicable solid lubricant additive (zinc borate) with a decomposable vegetable based lubricant oil.Peer reviewedFinal Accepted Versio

    Antibacterial Performance of a Cu-bearing Stainless Steel against Microorganisms in Tap Water

    Get PDF
    This document is the Accepted Manuscript of the following article: Mingjun Li, Li Nan, Dake xu, Guogang Ren, Ke Yang, ‘Antibacterial Performance of a Cu-bearing Stainless Steel against Microorganisms in Tap Water’, Journal of Materials Science & Technology, Vol. 31 (3): 243-251, March 2015, DOI: https://doi.org/10.1016/j.jmst.2014.11.016, made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).Tap water is one of the most commonly used water resources in our daily life. However, the increasing water contamination and the health risk caused by pathogenic bacteria, such as Staphylococcus aureus and Escherichia coli have attracted more attention. The mutualism of different pathogenic bacteria may diminish antibacterial effect of antibacterial agents. It was found that materials used for making pipe and tap played one of the most important roles in promoting bacterial growth. This paper is to report the performance of an innovative type 304 Cu-bearing stainless steel (304CuSS) against microbes in tap water. The investigation methodologies involved were means of heterotrophic plate count, contact angle measurements, scanning electron microscopy for observing the cell and subtract surface morphology, atomic absorption spectrometry for copper ions release study, and confocal laser scanning microscopy used for examining live/dead bacteria on normal 304 stainless steel and 304CuSS. It was found that the surface free energy varied after being immersed in tap water with polar component and Cu ions release. The results showed 304CuSS could effectively kill most of the planktonic bacteria (max 95.9% antibacterial rate), and consequently inhibit bacterial biofilms formation on the surface, contributing to the reduction of pathogenic risk to the surrounding environments.Peer reviewe

    Antibacterial Performance of Cu-Bearing Stainless Steel against Staphylococcus aureus and Pseudomonas aeruginosa in Whole Milk

    Get PDF
    This document is the Accepted Manuscript of the following article: Li Nan, Guogang Ren, Donghui Wang and Ke Yang, ‘Antibacterial Performance of Cu-Bearing Stainless Steel against Staphylococcus aureus and Pseudomonas aeruginosa in Whole Milk’, Journal of Materials Science and Technology, Vol 32(5): 445-451, May 2016, doi: http://dx.doi.org/10.1016/j/jmst.2016.01.0002. This manuscript version is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-NC 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.Pathogen microorganisms exist in various environments such as dairy processing facilities. They are not easily eliminated, and significantly raise the risk of bacterial contamination. The inhibition ability of a novel type 304 Cu-bearing stainless steel (304CuSS) with nano-sized Cu-rich precipitates against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) added whole milk was investigated in this study. The results showed that after 24 h contact, the inhibition rates of the 304CuSS against S. aureus and P. aeruginosa added whole milk reached 99.2% ± 0.3% and 99.3% ± 0.2%, respectively, in contrast with the 304SS. In the plain whole milk, the inhibition rate of the 304CuSS also reached 66.9% ± 2.0% compared with the 304SS. The results demonstrated that the 304CuSS killed majority of the planktonic bacteria, and inhibited sessile bacteria adherence to the steel surface in the whole milk with and without bacteria addition, significantly reducing the bacterial growth rate. These research outcomes explicitly show an application potential of this novel antibacterial stainless steel in the dairy related food industry.Peer reviewedFinal Accepted Versio

    Cognitive deficits induced by multi-walled carbon nanotubes via the autophagic pathway

    Get PDF
    This document is the Accepted Manuscript version, made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.Multi-walled carbon nanotubes (MWCNTs) have shown potential applications in many fields, especially in the field of biomedicine. Several studies have reported that MWCNTs induce apoptosis and oxidative damage in nerve cells during in vitro experiments. However, there are few studies focused on the neurotoxicity of MWCNTs used in vivo. Many studies have reported that autophagy, a cellular stress response to degrade damaged cell components, can be activated by diverse nanoparticles. In this study, we investigated the neurotoxic effects of MWCNTs on hippocampal synaptic plasticity and spatial cognition in rats. Then, we used an inhibitor of autophagy called chloroquine (CQ) to examine whether autophagy plays an important role in hippocampal synaptic plasticity, since this was damaged by MWCNTs. In this study, adult male Wister rats were randomly divided into three groups: a control group, a group treated with MWCNTs (2.5mg/kg/day) and a group treated with MWCNTs+CQ (20mg/kg/day). After two-weeks of intraperitoneal (i.p.) injections, rats were subjected to the Morris water maze (MWM) test, and the long-term potentiation (LTP) and other biochemical parameters were determined. Results showed that MWCNTs could induce cognitive deficits, histopathological alteration and changes of autophagy level (increased the ratio of LC3 II /LC3 I and the expression of Beclin-1). Furthermore, we found that CQ could suppress MWCNTs-induced autophagic flux and partly rescue the synapse deficits, which occurred with the down-regulation of NR2B (a subunit of NMDA receptor) and synaptophysin (SYP) in the hippocampus. Our results suggest that MWCNTs could induce cognitive deficits in vivo via the increased autophagic levels, and provide a potential strategy to avoid the adverse effects of MWCNTs.Peer reviewedFinal Accepted Versio

    Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors

    Get PDF
    Background: Nanomaterials, as a new kind of materials, have been greatly applied in different fields due to their special properties. With the industrialization of nanostructured materials and increasing public exposure, the biosafety and potential influences on central nervous system (CNS) have received more attention. Nanosized zinc oxide (nanoZnO) was suggested to up-regulate neuronal excitability and to induce glutamate release in vitro. Therefore, we hypothesized nanoparticles of nanoZnO may lead to changes in balance of neurotransmitter or neuronal excitability of CNS. This study was to investigate if there were effects of nanoZnO on animal model of depression. Methods: Male Swiss mice were given lipopolysaccharides (LPS, 100 mu g/kg, 100 mu g/ml, every other day, 8 times, i.p.) from weaning to induce depressive-like behaviors. NanoZnO (5.6 mg/kg, 5.6 mg/ml, every other day, 8 times, i.p.) was given as the interaction. The mouse model was characterized using the methods of open field test, tail suspension test and forced swim test. Furthermore, the spatial memory was evaluated using Morris water maze (MWM) and the synaptic plasticity was assessed by measuring the long-term potentiation (LTP) in the perforant pathway (PP) to dentate gyrus (DG) in vivo. Results: Results indicated that model mice showed disrupted spatial memory and LTP after LPS injections and the behavioral and electrophysiological improvements after nanoZnO treatment. Conclusion: Data suggested that nanoZnO may play some roles in CNS of mental disorders, which could provide some useful direction on the new drug exploring and clinical researches.Peer reviewe

    Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea

    Get PDF
    The Three Gorges Dam (TGD) on the upper Changjiang (Yangtze River), China, disrupts the continuity of Changjiang sediment delivery to downstream and coastal areas. In this study, which was based on 54 years of annual water and sediment data from the mainstream and major tributaries of Changjiang, sediment deposition induced by the TGD in 2003–2008 was quantified. Furthermore, we determined the theoretical trapping efficiency of the cascade reservoir upstream of the TGD. Its impact on Changjiang sediment flux in the coming decades is discussed. Results show that about 172 million tons (Mt) of sediment was trapped annually by the TGD in 2003–2008, with an averaged trapping efficiency of 75%. Most of the total sediment deposition, as induced by the TGD (88%), accumulated within the region between the TGD site and Cuntan. However, significant siltation (12% of the total sediment deposition) also occurred upstream of Cuntan as a consequence of the upstream extended backwater region of the TGD. Additionally, the Changjiang sediment flux entered a third downward step in 2001, prior to operation of the TGD. This mainly resulted from sediment reduction in the Jinshajiang tributary since the late 1990s. As the cascade reservoir is put into full operation, it could potentially trap 91% of the Jinshajiang sediment discharge and, therefore, the Jinshajiang sediment discharge would most likely further decrease to 14 Mt/yr in the coming decades. Consequently, the Changjiang sediment flux to the sea is expected to continuously decrease to below 90 Mt/yr in the near future, or only 18% of the amount observed in the 1950s. In the presence of low sediment discharge, profound impacts on the morphology of estuary, delta and coastal waters are expected

    HT2008-56077 CFD Approach Analysis of Chemical Reactions Coupled Convective Heat Transfer in Reformer Ducts

    Get PDF
    ABSTRACT Thermo-mechanical failure of components in a compact steam reformer is a major obstacle to bring this technology to real-life applications. The probability of material degradation and failure depends strongly on the convective heat transfer in the fuel gas flow duct and local temperature distribution in multifunctional materials. It is of significant importance to accurately predict the convective heat transfer coupled with catalytic reactions within the reformer components. In this paper, the simulation and analysis of combined chemical reactions and transport processes are conducted for a duct relevant for compact design steam reformer, which consists of a porous layer for the catalytic reforming reactions of methane, the fuel gas flow duct and solid plates. A fully three-dimensional computational fluid dynamics (CFD) approach is applied to calculate transport processes and effects of thermal conductivities of the involved multi-functional materials on convective heat transfer/temperature distributions, in terms of interface temperature gradients/heat fluxes and Nusselt numbers. The steam reformer conditions such as mass balances associated with the reactions and gas permeation to/from the porous anode are implemented in the calculation. The results show that the classic thermal boundary conditions (either constant heat flux or temperature, or combined one) may not be applicable for the interfaces between the fuel flow duct and solid plate/porous layer

    Aestivation induces widespread transcriptional changes in the African lungfish

    Get PDF
    Aestivation is a special ability possessed by some animals to cope with hot and dry environments utilizing dormancy. At a macroscopic level, dormant animals stop moving and eating. At the microscopic level, the expression of a large number of genes in these animals is strictly controlled. However, little is known about what changes occur during aestivation, especially in fish. In this study, we used transcriptome analysis to examine what changes occur in the gills and lungs of the African lungfish (Protopterus annectens) during the maintenance phase of aestivation and speculated on their causes. We found that aestivating transcriptomes were highly similar between gills and lungs. We also found that some genes showed differential expression or alternative splicing, which may be associated with different organs. In addition, differential expression analysis revealed that the lungs maintained significantly higher bioactivity during aestivation, which suggests that the main respiratory organ in aestivating lungfish can transform. Our study provides a reference point for studying the relationship between aestivation and hibernation and further increases understanding of aestivation

    A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Get PDF
    This document is the Accepted Manuscript version of the following article: Ling Ren, Kaveh Memarzadeh, Shuyuan Zhang, Ziqing Sun, Chunguang Yang, Guogang Ren, Robert T. Allaker, Ke Yang, ‘A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties’, Vol. 67: 461-467, October 2016, doi: http://dx.doi.org/10.1016/j.msec.2016.05.069. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ .OBJECTIVE: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. METHODS: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. RESULTS: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. SIGNIFICANCE: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications.Peer reviewe

    AP Deployment Research Based on Physical Distance and Channel Isolation

    Get PDF
    Aiming at the problem of inefficiency of wireless local area networks (WLAN) access point (AP) deployment in urban environment, a new algorithm for AP deployment based on physical distance and channel isolation (DPDCI) is proposed. First, it detects the position information of deployed APs and then calculates the interference penalty factor combined with physical distance and channel isolation, and finally gets the optimal location and channel of the new AP through the genetic algorithm. Comparing with NOOCA algorithm and NOFA-2 algorithm, the results of numerical simulation show that the new algorithm can minimize the mutual interference between basic service sets (BSS), can ensure the maximum of throughput based on quality of service (QoS) in BSS, and can effectively improve the system performance
    • …
    corecore