111 research outputs found

    A Monitoring System Design in Transmission Lines based on Wireless Sensor Networks

    Get PDF
    AbstractA smart grid application in monitoring the condition of transmission line with wireless sensor networks was described in this paper. ZigBee and GPRS (General Packet Radio Service) technology were adopted in this system to ensure normal transmission of signals, even in remote areas where there is no telecommunication service, and data could be transmitted over a long distance. In addition, the system provided warnings before the damage caused by meteorological disasters to ensure the line security

    Analgesic Effects of Triterpenoid Saponins From Stauntonia chinensis via Selective Increase in Inhibitory Synaptic Response in Mouse Cortical Neurons

    Get PDF
    Triterpenoid saponins from Stauntonia chinensis (TSS) are potential therapeutic agents because of its analgesic properties. However, the underlying mechanisms of the anti-nociceptive activity of TSS are largely unclear, especially in CNS. The present study confirmed the analgesic effect of TSS using four models of acute pain based on thermal or chemical stimuli. TSS treatment specifically impaired the threshold of thermal- and chemical-stimulated acute pain. Naloxone did not block the anti-nociceptive effects of TSS, which showed no participation of the opioid system. We investigated the electrical signal in cultured cortical neurons to explore whether TSS treatment directly affected synaptic transmission. TSS treatment selectively increased spontaneous inhibitory synaptic release and GABA induced charge transfer in mouse cortical neurons. The effects of TSS were maintained for at least 8 h in cultured neurons and in injected mice. Taken together, our results suggest that the analgesic role of TSS in cortex occurs via a particular increase in the inhibitory synaptic response at resting state, which supports TSS as a potential candidate for inflammatory pain relief

    Cortex phellodendri

    Get PDF
    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K+- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm

    Spectroscopic and dynamic light scattering studies of the interaction between pterodontic acid and bovine serum albumin

    Get PDF
    Pterodontic acid (PA) has been isolated from Laggera pterodonta, a Chinese herbal medicine, and shown to possess antibacterial activity in vitro. To facilitate its preclinical development, the interaction between PA and bovine serum albumin (BSA) was studied using a fluorescence quenching technique, ultraviolet–visible spectrophotometry and dynamic light scattering (DLS). At temperatures of 297 K and 310 K and an excitation wavelength of 282 nm, the fluorescence intensity of BSA decreased significantly with increasing concentration of PA attributed to the formation of a PA–BSA complex. The apparent binding constant, number of binding sites and corresponding thermodynamic parameters were calculated and the main intermolecular attraction shown to result from hydrogen bonding and van der Waals forces. Synchronous fluorescence spectrometry revealed that the binding site in the complex approached the microenvironment of Trp and three-dimensional fluorescence spectroscopy showed the binding induced conformational changes in BSA. Using DLS, increasing PA concentration was shown to cause a gradual increase in hydrodynamic diameter and significant aggregation of the complex

    Control of articulated snake robot under dynamic active constraints.

    No full text
    Flexible, ergonomically enhanced surgical robots have important applications to transluminal endoscopic surgery, for which path-following and dynamic shape conformance are essential. In this paper, kinematic control of a snake robot for motion stabilisation under dynamic active constraints is addressed. The main objective is to enable the robot to track the visual target accurately and steadily on deforming tissue whilst conforming to pre-defined anatomical constraints. The motion tracking can also be augmented with manual control. By taking into account the physical limits in terms of maximum frequency response of the system (manifested as a delay between the input of the manipulator and the movement of the end-effector), we show the importance of visual-motor synchronisation for performing accurate smooth pursuit movements. Detailed user experiments are performed to demonstrate the practical value of the proposed control mechanism.link_to_subscribed_fulltex

    Highlights from ACM SIGSPATIAL China chapter in 2014

    No full text

    An ungrounded hand-held surgical device incorporating active constraints with force-feedback

    No full text
    This paper presents an ungrounded, hand-held surgical device that incorporates active constraints and forcefeedback. Optical tracking of the device and embedded actuation allow for real-time motion compensation of a surgical tool as an active constraint is encountered. The active constraints can be made soft, so that the surgical tool tip motion is scaled, or rigid, so as to altogether prevent the penetration of the active constraint. Force-feedback is also provided to the operator so as to indicate penetration of the active constraint boundary by the surgical tool. The device has been evaluated in detailed bench tests to quantify its motion scaling and force-feedback capabilities. The combined effects of force-feedback and motion compensation are demonstrated during palpation of an active constraint with rigid and soft boundaries. A user study evaluated the combined effect of motion compensation and force-feedback in preventing penetration of a rigid active constraint. The results have shown the potential of the device operating in an ungrounded setup that incorporates active constraints with force-feedback. © 2013 IEEE.link_to_subscribed_fulltex
    • …
    corecore