82 research outputs found
Deep Learning-Enabled Swallowing Monitoring and Postoperative Recovery Biosensing System
This study introduces an innovative 3D printed dry electrode tailored for
biosensing in postoperative recovery scenarios. Fabricated through a drop
coating process, the electrode incorporates a novel 2D material.Comment: the abstract can't uploaded full
Development of high-producing CHO cell lines through target-designed strategy
Productivity and stability are critical for the protein drug producing cell lines for manufacturing. Given that the integration sites of gene of interest (GOI) could contribute remarkable effect on the productivity and stability of GOI expression, we intended to develop a targeting-designed approach to generate the high-producing cell lines in a time-saving and less labor-intensive method through targeting the active and stable regions. To identify the active and stable regions located in CHO genome, two approaches were applied in our experiments. Firstly, the integration sites of GOI in cell clones developed by random integration were identified by whole genome sequencing. Secondly, we developed transposon-mediated low copy integration to discover novel active region located in CHO genome. It is interesting that the productivity per integrated GOI in cell clones developed by transposon system was more than two times to that in cell clones developed by random integration (random integration: 20-40 mg/L/copy; transposon-mediated integration: 40-140mg/L/copy). In addition, about 80% of cell clones developed by transposon system maintained the stability of antibody titer after culturing for 60 generations. These results implied that the potential active and stable integration region in the cell clones developed by transposon system. The identified integration regions could be applied for target integration. In order to verify the expression activity and stability of the integration sites, we employed CRISPR/Cas9 to specifically integrate the antibody gene into CHO genome for expression. Our data showed the cell pool generated by knock-in of expression vector into the IS1 integration site present higher expression titer than cell pools generated by integration into other sites or random integration. We further cultured the single cell clones derived from this cell pool by Clonepix and limiting dilution. These single cell clones have high expression titer ranging from 254 to 804 mg/L in batch culture of after 6 Days. A single cell clone(376 mg/L in batch culture) can reached 2 g/L in fed-batch culture. The stability analysis showed this clone maintain stable expression of GOI after 60 generation. Here, we demonstrated the generation of stable cell line with high protein expression by CRISPR/Cas9 mediated target integration. This approach will cost less time and labor than traditional method
Extracorporeal membrane oxygenation for neonatal congenital diaphragmatic hernia: The initial single-center experience in Taiwan
Background/Purpose Extracorporeal membrane oxygenation (ECMO) is a treatment option for stabilizing neonates with congenital diaphragmatic hernia (CDH) in a critical condition when standard therapy fails. However, the use of this approach in Taiwan has not been previously reported. Methods The charts of all neonates with CDH treated in our institute during the period 2007–2014 were reviewed. After 2010, patients who could not be stabilized with conventional treatment were candidates for ECMO. We compared the demographic data of patients with and without ECMO support. The clinical course and complications of ECMO were also reviewed. Results We identified 39 neonates with CDH with a median birth weight of 2696 g (range, 1526–3280 g). Seven (18%) of these patients required ECMO support. The APGAR score at 5 minutes differed significantly between the ECMO and non-ECMO groups. The survival rate was 84.6% (33/39) for all CDH patients and 57.1% (4/7) for the ECMO group. The total ECMO bypass times in the survivors was in the range of 5–36 days, whereas all nonsurvivors received ECMO for at least 36 days (mean duration, 68 days). Surgical bleeding occurred in four of seven patients in the ECMO group. Conclusion The introduction of ECMO rescued some CDH patients who could not have survived by conventional management. Prolonged (i.e., > 36 days) ECMO support had no benefit for survival
International Validation of the SORG Machine-learning Algorithm for Predicting the Survival of Patients with Extremity Metastases Undergoing Surgical Treatment
Background The Skeletal Oncology Research Group machine-learning algorithms (SORG-MLAs) estimate 90- day and 1-year survival in patients with long-bone metastases undergoing surgical treatment and have demonstrated good discriminatory ability on internal validation. However, the performance of a prediction model could potentially vary by race or region, and the SORG-MLA must be externally validated in an Asian cohort. Furthermore, the authors of the original developmental study did not consider the Eastern Cooperative Oncology Group (ECOG) performance status, a survival prognosticator repeatedly validated in other studies, in their algorithms because of missing data. Questions/purposes (1) Is the SORG-MLA generalizable to Taiwanese patients for predicting 90-day and 1-year mortality? (2) Is the ECOG score an independent factor associated with 90-day and 1-year mortality while controlling for SORG-MLA predictions? Methods All 356 patients who underwent surgery for long-bone metastases between 2014 and 2019 at one tertiary care center in Taiwan were included. Ninety-eight percent (349 of 356) of patients were of Han Chinese descent. The median (range) patient age was 61 years (25 to 95), 52% (184 of 356) were women, and the median BMI was 23 kg/m2 (13 to 39 kg/m2). The most common primary tumors were lung cancer (33% [116 of 356]) and breast cancer (16% [58 of 356]). Fifty-five percent (195 of 356) of patients presented with a complete pathologic fracture. Intramedullary nailing was the most commonly performed type of surgery (59% [210 of 356]), followed by plate screw fixation (23% [81 of 356]) and endoprosthetic reconstruction (18% [65 of 356]). Six patients were lost to follow-up within 90 days; 30 were lost to follow-up within 1 year. Eighty-five percent (301 of 356) of patients were followed until death or for at least 2 years. Survival was 82% (287 of 350) at 90 days and 49% (159 of 326) at 1 year. The model's performance metrics included discrimination (concordance index [c-index]), calibration (intercept and slope), and Brier score. In general, a c-index of 0.5 indicates random guess and a c-index of 0.8 denotes excellent discrimination. Calibration refers to the agreement between the predicted outcomes and the actual outcomes, with a perfect calibration having an intercept of 0 and a slope of 1. The Brier score of a prediction model must be compared with and ideally should be smaller than the score of the null model. A decision curve analysis was then performed for the 90-day and 1-year prediction models to evaluate their net benefit across a range of different threshold probabilities. A multivariate logistic regression analysis was used to evaluate whether the ECOG score was an independent prognosticator while controlling for the SORG-MLA's predictions. We did not perform retraining/recalibration because we were not trying to update the SORG-MLA algorithm in this study. Results The SORG-MLA had good discriminatory ability at both timepoints, with a c-index of 0.80 (95% confidence interval 0.74 to 0.86) for 90-day survival prediction and a c-index of 0.84 (95% CI 0.80 to 0.89) for 1-year survival prediction. However, the calibration analysis showed that the SORG-MLAs tended to underestimate Taiwanese patients' survival (90-day survival prediction: Calibration intercept 0.78 [95% CI 0.46 to 1.10], calibration slope 0.74 [95% CI 0.53 to 0.96]; 1-year survival prediction: Calibration intercept 0.75 [95% CI 0.49 to 1.00], calibration slope 1.22 [95% CI 0.95 to 1.49]). The Brier score of the 90-day and 1-year SORG-MLA prediction models was lower than their respective null model (0.12 versus 0.16 for 90-day prediction; 0.16 versus 0.25 for 1-year prediction), indicating good overall performance of SORG-MLAs at these two timepoints. Decision curve analysis showed SORG-MLAs provided net benefits when threshold probabilities ranged from 0.40 to 0.95 for 90-day survival prediction and from 0.15 to 1.0 for 1-year prediction. The ECOG score was an independent factor associated with 90-day mortality (odds ratio 1.94 [95% CI 1.01 to 3.73]) but not 1-year mortality (OR 1.07 [95% CI 0.53 to 2.17]) after controlling for SORG-MLA predictions for 90-day and 1- year survival, respectively. Conclusion SORG-MLAs retained good discriminatory ability in Taiwanese patients with long-bone metastases, although their actual survival time was slightly underestimated. More international validation and incremental value studies that address factors such as the ECOG score are warranted to refine the algorithms, which can be freely accessed online at https://sorg-apps.shinyapps. io/extremitymetssurvival/
Comparison of eight modern preoperative scoring systems for survival prediction in patients with extremity metastasis
BACKGROUND: Survival is an important factor to consider when clinicians make treatment decisions for patients with skeletal metastasis. Several preoperative scoring systems (PSSs) have been developed to aid in survival prediction. Although we previously validated the Skeletal Oncology Research Group Machine-learning Algorithm (SORG-MLA) in Taiwanese patients of Han Chinese descent, the performance of other existing PSSs remains largely unknown outside their respective development cohorts. We aim to determine which PSS performs best in this unique population and provide a direct comparison between these models. METHODS: We retrospectively included 356 patients undergoing surgical treatment for extremity metastasis at a tertiary center in Taiwan to validate and compare eight PSSs. Discrimination (c-index), decision curve (DCA), calibration (ratio of observed:expected survivors), and overall performance (Brier score) analyses were conducted to evaluate these models' performance in our cohort. RESULTS: The discriminatory ability of all PSSs declined in our Taiwanese cohort compared with their Western validations. SORG-MLA is the only PSS that still demonstrated excellent discrimination (c-indexes>0.8) in our patients. SORG-MLA also brought the most net benefit across a wide range of risk probabilities on DCA with its 3-month and 12-month survival predictions. CONCLUSIONS: Clinicians should consider potential ethnogeographic variations of a PSS's performance when applying it onto their specific patient populations. Further international validation studies are needed to ensure that existing PSSs are generalizable and can be integrated into the shared treatment decision-making process. As cancer treatment keeps advancing, researchers developing a new prediction model or refining an existing one could potentially improve their algorithm's performance by using data gathered from more recent patients that are reflective of the current state of cancer care
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Stroke genetics informs drug discovery and risk prediction across ancestries
Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p
Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network
Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects
Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo
Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level
- …