31 research outputs found

    Structural and Thermoelectric Properties Characterization of Individual Single Crystalline Nanowire

    Get PDF
    Herein, we report a method for structural characterization as well as TE properties measurements of individual single-crystalline Lead telluride (PbTe) NWs by employing a new microchip design. In this work, the single PbTe NW was characterized in four different types of measurement: structural characterization, Seebeck coefficient S, electrical conductivity σ, and thermal conductivity κ. The structural characterization by transmission electron microscope (TEM) revealed that the PbTe NWs were high-quality single crystals with a growth along the [100] direction. The TE properties S, σ, and κ measurement results of individual 75 nm PbTe NW at room temperature were −54.76 µV K−1, 1526.19 S m−1, and 0.96 W m−1 K−1, respectively. Refer to the result of S, σ and κ; the figure of merit ZT values of a 75 nm PbTe NW at the temperature range of 300‒350 K were 1.4‒4.3 x 10−3. Furthermore, it was observed that the κ value is size-dependent compared to previous reported, which indicates that thermal transport through the individual PbTe NWs is limited by boundary scattering of both electrons and phonons. The results show that this new technique measurement provided a reliable ZT value of individual NW yielded high accuracy for size-dependent studies

    Observation-constrained projection of flood risks and socioeconomic exposure in China

    Get PDF
    As the planet warms, the atmosphere's water vapor holding capacity rises, leading to more intense precipitation extremes. River floods with high peak discharge or long duration can increase the likelihood of infrastructure failure and enhance ecosystem vulnerability. However, changes in the peak and duration of floods and corresponding socioeconomic exposure under climate change are still poorly understood. This study employs a bivariate framework to quantify changes in flood risks and their socioeconomic impacts in China between the past (1985–2014) and future (2071–2100) in 204 catchments. Future daily river streamflow is projected by using a cascade modeling chain based on the outputs of five bias-corrected global climate models (GCMs) under three shared socioeconomic CMIP6 pathways (SSP1-26, SSP3-70, and SSP5-85), a machine learning model and four hydrological models. We also utilize the copula function to build the joint distribution of flood peak and duration, and calculate the joint return periods of the bivariate flood hazard. Finally, the exposure of population and regional gross domestic product to floods are investigated at the national scale. Our results indicate that flood peak and duration are likely to increase in the majority of catchments by 25%–100% by the late 21st century depending on the shared socioeconomic pathway. China is projected to experience a significant increase in bivariate flood risks even under the lowest emission pathway, with 24.0 million dollars/km2 and 608 people/km2 exposed under a moderate emissions scenario (SSP3-70). These findings have direct implications for hazard mitigation and climate adaptation policies in China

    Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis

    Get PDF
    In order to increase crop yield in semi-arid and arid areas, plastic film mulching (PFM) is widely used in Northwestern China. To date, many studies have addressed the effects of PFM on soil physical and biochemical properties in rain-fed agriculture in Northwestern China, but the findings of different studies are often contradictory. Therefore, a comprehensive review of the impacts of PFM on soil water content, soil nutrients and food production is needed. We compiled the results of 1278 observations to evaluate the overall effects of PFM on soil water content, the distribution of nitrate and soil organic carbon, and crop yield in rain-fed agriculture in Northwestern China. Our results showed that PFM increased soil moisture and nitrate concentration in topsoils (0–20 cm) by 12.9% and 28.2%, respectively, but slightly decreased (1.8%) soil organic carbon (SOC) content in the 0–10 cm soil layer. PFM significantly increased grain yields by 43.1%, with greatest effect in spring maize (79.4%). When related to cumulative precipitation during the crop growing season, yield increase from PFM was greatest (72.8%) at 200–300 mm, which was attributed to the large increase for spring maize and potato, implying that crop zoning would be beneficial for PFM in this region. When related to N application rate, crop yields benefited most from PFM (80.2%) at 200–300 kg/ha. A cost-benefit analysis indicated that PFM increased economic return by an average of 29.5%, with the best improvement for spring maize (71.1%) and no increase for spring wheat. In conclusion, PFM can significantly increase crop yield and economic return (especially for spring maize) in rain-fed agriculture areas of Northwestern China. Crop zoning is recommended for PFM to achieve the largest economic benefit. However, full account needs to be taken of the environmental impacts relating to N loss, SOC depletion and film pollution to evaluate the sustainability of PFM systems and further research is required to quantify and mitigate these impacts

    Thermoelectric Characteristics of A Single-Crystalline Topological Insulator Bi2Se3 Nanowire

    No full text
    The discovery of topological insulators (TIs) has motivated detailed studies on their physical properties, especially on their novel surface states via strong spin–orbit interactions. However, surface-state-related thermoelectric properties are rarely reported, likely because of the involvement of their bulk-dominating contribution. In this work, we report thermoelectric studies on a TI bismuth selenide (Bi2Se3) nanowire (NW) that exhibit a larger surface/volume ratio. Uniform single-crystalline TI Bi2Se3 NWs were successfully synthesized using a stress-induced growth method. To achieve the study of the thermoelectric properties of a nanowire (NW), including electrical conductivity (σ), Seebeck coefficient (S), and thermal conductivity (κ), a special platform for simultaneously performing all measurements on a single wire was designed. The properties of σ, S, and κ of a 200 nm NW that was well precharacterized using transmission electron microscope (TEM) measurements were determined using the four-probe method, the two-probe EMF across ∇T measurement, and the 3ω technique, respectively. The integrated TE properties represented by the figure of merit ZT (S2σT/κ) were found to be in good agreement with a theoretical study of Bi2Se3 NW

    PiCAM: A Raspberry Pi‐based open‐source, low‐power camera system for monitoring plant phenology in Arctic environments

    No full text
    Abstract Time‐lapse cameras have been widely used as a tool to monitor the timing of seasonal vegetation growth. These simple, relatively inexpensive systems can provide high‐frequency observations of leaf development and demography which are critical data sets needed to characterize plant phenology from species to landscapes. This is important for understanding how plants are responding to global changes, as well as for validating satellite‐derived phenology products. However, in remote regions including the high‐latitude Arctic, deploying time‐lapse cameras could be challenging. The remoteness and lack of widespread power and telecommunications infrastructure limit options for the installation, maintenance and retrieval of data and equipment, and make it difficult for cameras to survive in extreme weather (e.g. long cold winters). To improve our understanding of Arctic phenology, new technologies are required to address these challenges. Here, we present a novel, low‐power, compact, lightweight time‐lapse camera system, called power‐interval camera automation module (PiCAM). The PiCAM was designed with explicit consideration to simplify deployment (i.e. without a need for external power supplies) of camera systems and to address the challenges of camera survival in harsh Arctic environments. In this paper, we describe the design, setup and technical details of the PiCAM and provide a roadmap for how to build and operate these systems. As proof of concept, we deployed 26 PiCAMs at three low‐Arctic tundra sites on the Seward Peninsula, Alaska in early August 2021 for characterizing Arctic plant phenology. Of the 26 PiCAMs, 70% remained active at the point of our revisit in late July 2022 despite the extreme winter temperatures they experienced (< −30°C, heavy snow cover). We extracted key plant phenology metrics from the PiCAMs and captured strong differences across key Arctic plant species. We showed that the PiCAM has the potential to be widely used for monitoring plant phenology across the broader Arctic region, addressing the need for ground‐based understanding of Arctic phenological diversity to develop knowledge of plant response to climate change and to validate remote sensing products

    Unveiling the Effects of Solvent Polarity within Graphene Based Electric Double-Layer Capacitors

    No full text
    Solvents have been considered to show a profound influence on the charge storage of electric double-layer capacitors (EDLCs). However, the corresponding mechanisms remain elusive and controversial. In this work, the influences of solvent dipole moment on the EDL structures, kinetic properties, and charging mechanisms of graphene-based EDLCs are investigated with atomistic simulations. Specifically, electrolyte structuring is conspicuously modulated by solvents, where a sharp increment of capacitance (~325.6%) and kinetics (~10-fold) is documented upon the slight descent of polarity by ~33.0%. Unusually, such an impressive enhancement is primarily attributed to the suppressed interfacial electric fields stimulated by strong-polarity solvents in the proximity of electrodes, which goes beyond the previously observed issues that stemmed from the competitive interplays between ions and solvents. Moreover, a distinctive polarity-dependent charging mechanism (i.e., from pure counterion adsorption to coion desorption) is identified, which for the first time delineates the pivotal role of solvent polarity in manipulating the charge storage evolutions. The as-obtained findings highlight that exploiting the solvent effects could be a promising avenue to further advance the performances of EDLCs

    Unveiling the Effects of Solvent Polarity within Graphene Based Electric Double-Layer Capacitors

    No full text
    Solvents have been considered to show a profound influence on the charge storage of electric double-layer capacitors (EDLCs). However, the corresponding mechanisms remain elusive and controversial. In this work, the influences of solvent dipole moment on the EDL structures, kinetic properties, and charging mechanisms of graphene-based EDLCs are investigated with atomistic simulations. Specifically, electrolyte structuring is conspicuously modulated by solvents, where a sharp increment of capacitance (~325.6%) and kinetics (~10-fold) is documented upon the slight descent of polarity by ~33.0%. Unusually, such an impressive enhancement is primarily attributed to the suppressed interfacial electric fields stimulated by strong-polarity solvents in the proximity of electrodes, which goes beyond the previously observed issues that stemmed from the competitive interplays between ions and solvents. Moreover, a distinctive polarity-dependent charging mechanism (i.e., from pure counterion adsorption to coion desorption) is identified, which for the first time delineates the pivotal role of solvent polarity in manipulating the charge storage evolutions. The as-obtained findings highlight that exploiting the solvent effects could be a promising avenue to further advance the performances of EDLCs

    Mapping Plastic Greenhouse With Medium Spatial Resolution Satellite Data: Development of a New Spectral Index

    No full text
    Plastic greenhouses (PGs) are an important agriculture development technique to protect and control the growing environment for food crops. The extensive use of PGs can change the agriculture landscape and affects the local environment. Accurately mapping and estimating the coverage of PGs is a necessity to the strategic planning of modern agriculture. Unfortunately, PG mapping over large areas is methodologically challenging, as the medium spatial resolution satellite imagery (such as Landsat data) used for analysis lacks spatial details and spectral variations. To fill the gap, the paper proposes a new plastic greenhouse index (PGI) based on the spectral, sensitivity, and separability analysis of PGs using medium spatial resolution images. In the context of the Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, the paper examines the effectiveness and capability of the proposed PGI. The results indicate that PGs in Landsat ETM+ image can be successfully detected by the PGI if the PG fraction is greater than 12% in a mixed pixel. A kappa coefficient of 0.83 and overall accuracy of 91.2% were achieved when applying the proposed PGI in the case of Weifang District, Shandong, China. These results show that the proposed index can be applied to identifying transparent PGs in atmospheric corrected Landsat image and has the potential for the digital mapping of plastic greenhouse coverage over a large area
    corecore