20 research outputs found

    Knowledge Distillation Using Hierarchical Self-Supervision Augmented Distribution

    Full text link
    Knowledge distillation (KD) is an effective framework that aims to transfer meaningful information from a large teacher to a smaller student. Generally, KD often involves how to define and transfer knowledge. Previous KD methods often focus on mining various forms of knowledge, for example, feature maps and refined information. However, the knowledge is derived from the primary supervised task and thus is highly task-specific. Motivated by the recent success of self-supervised representation learning, we propose an auxiliary self-supervision augmented task to guide networks to learn more meaningful features. Therefore, we can derive soft self-supervision augmented distributions as richer dark knowledge from this task for KD. Unlike previous knowledge, this distribution encodes joint knowledge from supervised and self-supervised feature learning. Beyond knowledge exploration, we propose to append several auxiliary branches at various hidden layers, to fully take advantage of hierarchical feature maps. Each auxiliary branch is guided to learn self-supervision augmented task and distill this distribution from teacher to student. Overall, we call our KD method as Hierarchical Self-Supervision Augmented Knowledge Distillation (HSSAKD). Experiments on standard image classification show that both offline and online HSSAKD achieves state-of-the-art performance in the field of KD. Further transfer experiments on object detection further verify that HSSAKD can guide the network to learn better features. The code is available at https://github.com/winycg/HSAKD.Comment: 15 pages, Accepted by IEEE Transactions on Neural Networks and Learning Systems 202

    CLIP-KD: An Empirical Study of Distilling CLIP Models

    Full text link
    CLIP has become a promising language-supervised visual pre-training framework and achieves excellent performance over a wide range of tasks. This paper aims to distill small CLIP models supervised by a large teacher CLIP model. We propose several distillation strategies, including relation, feature, gradient and contrastive paradigm, to examine the impact on CLIP distillation. We show that the simplest feature mimicry with MSE loss performs best. Moreover, interactive contrastive learning and relation-based distillation are also critical in performance improvement. We apply the unified method to distill several student networks trained on 15 million (image, text) pairs. Distillation improves the student CLIP models consistently over zero-shot ImageNet classification and cross-modal retrieval benchmarks. We hope our empirical study will become an important baseline for future CLIP distillation research. The code is available at \url{https://github.com/winycg/CLIP-KD}

    Online Knowledge Distillation via Mutual Contrastive Learning for Visual Recognition

    Full text link
    The teacher-free online Knowledge Distillation (KD) aims to train an ensemble of multiple student models collaboratively and distill knowledge from each other. Although existing online KD methods achieve desirable performance, they often focus on class probabilities as the core knowledge type, ignoring the valuable feature representational information. We present a Mutual Contrastive Learning (MCL) framework for online KD. The core idea of MCL is to perform mutual interaction and transfer of contrastive distributions among a cohort of networks in an online manner. Our MCL can aggregate cross-network embedding information and maximize the lower bound to the mutual information between two networks. This enables each network to learn extra contrastive knowledge from others, leading to better feature representations, thus improving the performance of visual recognition tasks. Beyond the final layer, we extend MCL to intermediate layers and perform an adaptive layer-matching mechanism trained by meta-optimization. Experiments on image classification and transfer learning to visual recognition tasks show that layer-wise MCL can lead to consistent performance gains against state-of-the-art online KD approaches. The superiority demonstrates that layer-wise MCL can guide the network to generate better feature representations. Our code is publicly avaliable at https://github.com/winycg/L-MCL.Comment: 18 pages, accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI-2023

    Localizing Semantic Patches for Accelerating Image Classification

    Full text link
    Existing works often focus on reducing the architecture redundancy for accelerating image classification but ignore the spatial redundancy of the input image. This paper proposes an efficient image classification pipeline to solve this problem. We first pinpoint task-aware regions over the input image by a lightweight patch proposal network called AnchorNet. We then feed these localized semantic patches with much smaller spatial redundancy into a general classification network. Unlike the popular design of deep CNN, we aim to carefully design the Receptive Field of AnchorNet without intermediate convolutional paddings. This ensures the exact mapping from a high-level spatial location to the specific input image patch. The contribution of each patch is interpretable. Moreover, AnchorNet is compatible with any downstream architecture. Experimental results on ImageNet show that our method outperforms SOTA dynamic inference methods with fewer inference costs. Our code is available at https://github.com/winycg/AnchorNet.Comment: Accepted by ICME-202
    corecore