15,676 research outputs found

    Problems of QCD factorization in exclusive decays of B meson to charmonium

    Full text link
    We study the exclusive decays of BB meson into P-wave charmonium states χcJ(J=0,1)\chi_{cJ}(J=0,1) in the QCD factorization approach with light-cone distribution functions describing the mesons in the processes. For Bχc1KB \to \chi_{c1} K decay, we find that there are logarithmic divergences arising from nonfactorizable spectator interactions even at twist-2 order and the decay rate is too small to accommodate the experimental data. For Bχc0KB\to \chi_{c0} K decay, we find that aside from the logarithmic divergences arising from spectator interactions at leading-twist order, more importantly, the factorization will break down due to the infrared divergence arising from nonfactorizable vertex corrections, which is independent of the specific form of the light-cone distribution functions. Our results may indicate that QCD factorization in the present form may not be safely applied to BB-meson exclusive decays to charmonium states.Comment: Latex, 7 pages, 1 eps figure, final version to appear in Phys.Lett.B; a few references are added, the expression of chi_c1 decay constant is give

    Infrared Divergence and Twist-3 Distribution Amplitudes in QCD Factorization For BPPB \to PP

    Get PDF
    Since b quark mass is not asymptotically large, chirally enhanced corrections which arise from twist-3 wave functions may be important in B decays. We thus evaluate the hadronic matrix elements with the final light pseudoscalar mesons described by leading twist and twist-3 distribution amplitudes. We find that chirally enhanced corrections can be included consistently in the framework of QCD factorization only if the twist-3 distribution amplitudes are symmetric. We then give explicit expressions of aipa_i^p for BππB \to \pi\pi at the next-to-leading order of αs\alpha_s including chirally enhanced corrections. We also briefly discuss the divergence appeared in the hard spectator contributions.Comment: 12 pages, 3 figures, A revised version to appear in Phys. Lett.

    Impact of Subleading Corrections on Hadronic B Decays

    Full text link
    We study the subleading corrections originating from the 3-parton (q\bar q g) Fock states of final-state mesons in B decays. The corrections could give significant contributions to decays involving an \omega or \eta^{(\prime)} in the final states. Our results indicate the similarity of \omega K and \omega \pi^- rates, of order 5\times 10^{-6}, consistent with the recent measurements. We obtain a_2(B\to J/\psi K)\approx 0.27+0.05i, in good agreement with data. Without resorting to the unknown singlet annihilation effects, 3-parton Fock state contributions can enhance the branching ratios of K\eta' to the level above 50\times 10^{-6}.Comment: 5 pages, 5 figures, revtex4; some typos corrected, a new figure and a reference added, more explanations for the calculation provided, to appear in Phys. Rev.

    ATP: Adaptive Tensor Parallelism for Foundation Models

    Full text link
    Foundation models have impressive performance and generalization capabilities across a wide range of applications. The increasing size of the models introduces great challenges for the training. Tensor parallelism is a critical technique that is currently used in almost all foundation model training and has a significant impact on overall training performance. However, current tensor parallelism in machine learning frameworks misses optimization opportunities in fitting various interconnection topologies. In this work, we present ATP, an adaptive tensor parallelism framework for foundation models, which can automatically select the optimal parallel strategy on different interconnections. We propose column- and row-first tensor parallelism based on 2D device meshes and construct a search space. Combined with the hierarchical communication matrix, ATP can identify the optimal strategy in the search space. We also propose chunk-based overlapping to reduce communication overhead. Our evaluations show ATP consistently outperforms the state-of-the-art approaches for various model sizes and interconnects, achieving end-to-end training performance improvements of up to 37-64% on specific interconnects. Based on our theoretical model, the communication overhead of ATP decreases with scaling, indicating a qualitative leap forward

    Implications of Recent Measurements of Hadronic Charmless B Decays

    Get PDF
    Implications of recent CLEO measurements of hadronic charmless B decays are discussed. (i) Employing the Bauer-Stech-Wirbel (BSW) model for form factors as a benchmark, the Bπ+πB\to\pi^+\pi^- data indicate that the form factor F0Bπ(0)F_0^{B\pi}(0) is smaller than that predicted by the BSW model, whereas the data of Bωπ,KηB\to\omega\pi, K^*\eta imply that the form factors A0Bω(0),A0BK(0)A_0^{B\omega}(0), A_0^{BK^*}(0) are greater than the BSW model's values. (ii) The tree-dominated modes Bπ+π,ρ0π±,ωπ±B\to\pi^+\pi^-, \rho^0\pi^\pm, \omega\pi^\pm imply that the effective number of colors N_c(LL) for (V-A)(V-A) operators is preferred to be smaller, while the current limit on BϕKB\to\phi K shows that N_c(LR)>3. The data of BKηB\to K\eta' and KηK^*\eta clearly indicate that Nc(LR)Nc(LL)N_c(LR)\gg N_c(LL). (iii) In order to understand the observed suppression of π+π\pi^+\pi^- and non-suppression of KπK\pi modes, both being governed by the form factor F0BπF_0^{B\pi}, the unitarity angle γ\gamma is preferred to be greater than 9090^\circ. By contrast, the new measurement of B±ρ0π±B^\pm\to\rho^0\pi^\pm no longer strongly favors cosγ<0\cos\gamma<0. (iv) The observed pattern K^-\pi^+\sim \ov K^0\pi^-\sim {2\over 3}K^-\pi^0 is consistent with the theoretical expectation: The constructive interference between electroweak and QCD penguin diagrams in the Kπ0K^-\pi^0 mode explains why {\cal B}(B^-\to K^-\pi^0)>{1\over 2}{\cal B}(\ov B^0\to K^-\pi^+). (v) The observation \nc(LL)<3<\nc(LR) and our preference for \nc(LL)\sim 2 and \nc(LR)\sim 6 are justified by a recent perturbative QCD calculation of hadronic rare B decays in the heavy quark limit.Comment: 21 pages; CLEO measurements of several charmless B decay modes are updated. Discussion of the unitarity angle gamma in the \rho\pi mode is revise

    A Design Of Taper-Like Etched Multicore Fiber Refractive Index-Insensitive A Temperature Highly Sensitive Mach-Zehnder Interferometer

    Get PDF
    We propose and demonstrate Mach-Zehnder interferometer (MZI), which is the refractive index (RI) insensitive and temperature highly sensitive based on etched multi-core fiber (MCF) structure. The MCF and Fiber Bragg Grating (FBG) are used as hybrid sensing elements. The fabrication of the interferometer is provided a new taper-like structure by etching the MCF to further expose the side cores to the surroundings. The interferometer has produced a sensitivity of 103.2pm/°C within the ambient temperature up-to 70°C. Moreover, the superior temperature sensitivity is 89.19pm/°C, 66.64pm/°C, 56.42pm/°C in the range of 24°C to 130°C, and RI-insensitive in the range of 1.34 to 1.38, for different waists of etched seven-core fiber interferometers (E7CFIs) \sim ~84.70\mu \text{m} , 93.10\mu \text{m} , 108.67\mu \text{m} , respectively. Compared with the conventional FBGs, the sensitivity of the interferometer is significantly improved by 8 times. E7CFI\u27s novel and advantageous features can easily be distinguished other devices. Besides, the proposed sensing architecture is compact, easy to fabricate, highly sensitive, easy to reproduce, and makes it an inexpensive fiber optic device

    Adversarial Preference Optimization

    Full text link
    Human preference alignment is a crucial training step to improve the interaction quality of large language models (LLMs). Existing aligning methods depend on manually annotated preference data to guide the LLM optimization directions. However, in practice, continuously updating LLMs raises a distribution gap between model-generated samples and human-preferred responses, which hinders model fine-tuning efficiency. To mitigate this issue, previous methods require additional preference annotation on generated samples to adapt the shifted distribution, which consumes a large amount of annotation resources. Targeting more efficient human preference optimization, we propose an adversarial preference optimization (APO) framework, where the LLM agent and the preference model update alternatively via a min-max game. Without additional annotation, our APO method can make a self-adaption to the generation distribution gap through the adversarial learning process. In experiments, we empirically verify the effectiveness of APO in improving LLM's helpfulness and harmlessness compared with rejection sampling baselines.Comment: In proces
    corecore