49 research outputs found

    USP13 antagonizes gp78 to maintain functionality of a chaperone in ER-associated degradation

    Get PDF
    Physiological adaptation to proteotoxic stress in the endoplasmic reticulum (ER) requires retrotranslocation of misfolded proteins into the cytoplasm for ubiquitination and elimination by ER-associated degradation (ERAD). A surprising paradox emerging from recent studies is that ubiquitin ligases (E3s) and deubiquitinases (DUBs), enzymes with opposing activities, can both promote ERAD. Here we demonstrate that the ERAD E3 gp78 can ubiquitinate not only ERAD substrates, but also the machinery protein Ubl4A, a key component of the Bag6 chaperone complex. Remarkably, instead of targeting Ubl4A for degradation, polyubiquitination is associated with irreversible proteolytic processing and inactivation of Bag6. Importantly, we identify USP13 as a gp78-associated DUB that eliminates ubiquitin conjugates from Ubl4A to maintain the functionality of Bag6. Our study reveals an unexpected paradigm in which a DUB prevents undesired ubiquitination to sharpen substrate specificity for an associated ubiquitin ligase partner and to promote ER quality control

    The ERAD Inhibitor Eeyarestatin I Is a Bifunctional Compound with a Membrane-Binding Domain and a p97/VCP Inhibitory Group

    Get PDF
    Protein homeostasis in the endoplasmic reticulum (ER) has recently emerged as a therapeutic target for cancer treatment. Disruption of ER homeostasis results in ER stress, which is a major cause of cell death in cells exposed to the proteasome inhibitor Bortezomib, an anti-cancer drug approved for treatment of multiple myeloma and Mantle cell lymphoma. We recently reported that the ERAD inhibitor Eeyarestatin I (EerI) also disturbs ER homeostasis and has anti-cancer activities resembling that of Bortezomib.Here we developed in vitro binding and cell-based functional assays to demonstrate that a nitrofuran-containing (NFC) group in EerI is the functional domain responsible for the cytotoxicity. Using both SPR and pull down assays, we show that EerI directly binds the p97 ATPase, an essential component of the ERAD machinery, via the NFC domain. An aromatic domain in EerI, although not required for p97 interaction, can localize EerI to the ER membrane, which improves its target specificity. Substitution of the aromatic module with another benzene-containing domain that maintains membrane localization generates a structurally distinct compound that nonetheless has similar biologic activities as EerI.Our findings reveal a class of bifunctional chemical agents that can preferentially inhibit membrane-bound p97 to disrupt ER homeostasis and to induce tumor cell death. These results also suggest that the AAA ATPase p97 may be a potential drug target for cancer therapeutics

    Prediction of body fat increase from food addiction scale in school-aged children and adolescents: A longitudinal cross-lagged study

    Get PDF
    ObjectiveFood addiction (FA) is associated with a higher body mass index z-score (BMIZ) in children and adolescents; however, whether these two aspects evolve interdependently remains unknown. This study aimed to address this question using a cross-lagged study.MethodsWeight status, including BMIZ, fat content (FC), and visceral fat level (VFL), was determined in 880 children and adolescents (mean age = 14.02 years [range = 8.83–17.52 years]) at two-time points with an interval of 6 months. FA was characterized using the Chinese version of the dimensional Yale Food Addiction Scale for Children 2.0. Furthermore, FC and VFL were measured using direct segmental multi-frequency bioelectrical impedance analysis at each time point.ResultsHigher FA was associated with increased BMIZ, FC, and VFL (P < 0.05). FA at T0 could predict increased FC at T1 (P < 0.05). The characteristics of females, primary students, and living in urban areas may aggravate the adverse effect of FA on weight status over time and age, particularly the increased VFL in participants aged > 14 years.ConclusionChildren and adolescents with a high FA level were at risk for weight gain attributed to increased FC, and the adverse effect could be aggravated with time and age. Novel FA-targeting interventions may help mitigate the risk of getting obesity

    Potential Tumor Suppressor NESG1 as an Unfavorable Prognosis Factor in Nasopharyngeal Carcinoma

    Get PDF
    BACKGROUND:Recently we identified nasopharyngeal epithelium specific protein 1 (NESG1) as a potential tumor suppressor in nasopharyngeal carcinoma (NPC). The purpose of this study is to investigate the involvement of NESG1 in tumor progression and prognosis of human NPC. METHODOLOGY/PRINCIPAL FINDINGS:NESG1 protein expression in NPC was examined. Survival analysis was performed using Kaplan-Meier method. The effect of NESG1 on cell proliferation, migration, and invasion were also investigated. RESULTS:NESG1 expression was downregulated in atypical hyperplasia and NPC samples compared to normal and squamous nasopharynx tissues. Reduced protein expression was negatively associated with the status of NPC progression. Patients with lower NESG1 expression had a shorter overall survival and disease-free time than did patients with higher NESG1 expression. Multivariate analysis suggested NESG1 expression as an independent prognostic indicator for NPC patient survival. Proliferation, migration, and invasion ability were significantly increased in cell lines following lentiviral-mediated shRNA suppression of NESG1 expression. Microarray analysis indicated that NESG1 participated in multiple pathways, including MAPK signaling and cell cycle regulation. Finally, DNA methylation microarray examination revealed a lack of hypermethylation at the NESG1 promoter, suggesting other mechanisms are involved in suppressing NESG1 expression in NPC. CONCLUSION:Our studies are the first to demonstrate that decreased NESG1 expression is an unfavorable prognostic factor for NPC

    Correction: Embryonic Stem Cells Markers SOX2, OCT4 and Nanog Expression and Their Correlations with Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma

    Get PDF
    Expression of embryonic stem cells (ESCs) markers (SOX2, OCT4, Nanog and Nestin) is crucial for progression of various human malignancies. The purpose of this study was to investigate the expression and prognostic impact of these molecules in nasopharyngeal carcinoma (NPC) patients by immunohistochemistry and immunofluorescence. In the present study, we found that the expression levels of SOX2, OCT4 and Nanog were highly expressed in NPC compared with the non-tumorous tissues. Furthermore, these proteins correlated significantly with several clinicalpathological factors and epithelial-mesenchymal transition (EMT)-associated indicators (E-cadherin/N-cadherin and Snail). In multivariate analyses, high expression of OCT4 (P = 0.013) and Nanog (P = 0.040), but not that of SOX2, was associated with worse survival and had strongly independent prognostic effects. Of note, OCT4 and Nanog were more frequently located at the invasive front of tumors, and correlated significantly with various aggressive behaviors including T classification, N classification, M classification and clinical stage. Furthermore, patients with co-expression of OCT4 and Nanog in the invasive front had significantly worse survival (P = 0.005). Interestingly, at the invasive front, these molecules correlated significantly with Nestin expression in endothelial cells (P<0.001). These findings provide evidence that ESCs biomarkers OCT4 and Nanog serves as independent prognostic factors for NPC. Additionally, cancer cells in the invasive front of NPC acquiring ESCs-like features should be maintained by vascular niches

    CA-125–indicated asymptomatic relapse confers survival benefit to ovarian cancer patients who underwent secondary cytoreduction surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no consensus regarding the management of ovarian cancer patients, who have shown complete clinical response (CCR) to primary therapy and have rising cancer antigen CA-125 levels but have no symptoms of recurrent disease. The present study aims to determine whether follow-up CA-125 levels can be used to identify the need for imaging studies and secondary cytoreductive surgery (CRS).</p> <p>Methods</p> <p>We identified 410 ovarian cancer patients treated at The University of Texas MD Anderson Cancer Center between 1984 and 2011. These patients had shown CCR to primary therapy. Follow-up was conducted based on the surveillance protocol of the MD Anderson Cancer Center. We used the Cox proportional hazards model and log-rank test to assess the associations between the follow-up CA-125 levels and secondary CRS and survival duration.</p> <p>Results</p> <p>The CA-125 level of 1.68 × nadir was defined as the indicator of recurrent disease (p < 0.001). The specificity and sensitivity of this criterion were 82.9% and 85.6%, respectively, and the median lead-time of the CA-125 biochemical progression prior to clinically-defined relapse was 31 days (ranging from 1 to 391 days). The median number of the negative imaging studies for the clinical relapse findings in patients with a CA-125 level of < 1.68 × nadir was 3 (ranging from 0 to 24 times). The increase of CA-125 level at relapse was an independent predictor of overall and progression free survival in patients who had shown CCR to primary therapy (p = 0.04 and 0.02 respectively). The overall and progression free survival durations in patients with a CA-125 level ≤ 1.68 × nadir at relapse (69.4 and 13.8 months) were longer than those with a CA-125 level > 1.68 × nadir at relapse (55.7 and 10.4 months; p = 0.04 and 0.01, respectively). The overall and progression free survival duration of patients with asymptomatic relapse and underwent a secondary CRS was longer than that of patients with symptomatic relapse (p = 0.02 and 0.04 respectively).</p> <p>Conclusions</p> <p>The increase of serum CA-125 levels is an early warning of clinical relapse in ovarian cancer. Using CA-125 levels in guiding the treatment of patients with asymptomatic recurrent ovarian cancer, who have shown CCR to primary therapy, can facilitate optimal secondary CRS and extend the survival duration of the patients.</p

    Electrochemical and structural study of layered P2-type Na2/3Ni1/3Mn2/3O2 as cathode material for sodium-ion battery

    No full text
    P2-type Na2/3Ni1/3Mn2/3O2 was synthesized by a controlled co-precipitation method followed by a high-temperature solid-state reaction and was used as a cathode material for a sodium-ion battery (SIB). The electrochemical behavior of this layered material was studied and an initial discharge capacity of 151.8 mAhg(-1) was achieved in the voltage range of 1.5-3.75 V versus Na+/Na. The retained discharge capacity was found to be 123.5 mAhg(-1) after charging/dis-charging 50 cycles, approximately 81.4% of the initial discharge capacity. In situ X-ray diffraction analysis was used to investigate the sodium insertion and extraction mechanism and clearly revealed the reversible structural changes of the P-2-Na2/3Ni1/3Mn2/3O2 and no emergence of the O-2-Ni1/3Mn2/3O2 phase during the cycling test, which is important for designing stable and high-performance SIB cathode materials

    Zhibaidihuang Decoction Ameliorates Cell Oxidative Stress by Regulating the Keap1-Nrf2-ARE Signalling Pathway

    No full text
    Zhibaidihuang decoction (ZBDHD) is a Chinese herbal formula, which is used in Chinese traditional medicine to treat symptoms of Yinxuhuowang (Yin deficiency and high fire) syndrome. This study elucidates the mechanism of ZBDHD on oral ulcers, one Yinxuhuowang syndrome. Simultaneously, some ingredients in ZBDHD were found and identified by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A Ganjiangfuzirougui decoction- (GJD-) induced Yinxuhuowang syndrome SD rat model was used to demonstrate the efficiency of ZBDHD treatment. The oral mucosa of rat in the GJD group, stained with hematoxylin and eosin (H&E), showed epidermal shedding and inflammatory cell infiltration. And an alleviation efficiency of ZBDHD in GJD-induced pathological changes in the oral mucosa could be obtained. ZBDHD treatment restored the GJD-induced imbalance of metabolites, which were choline, glycocholic acid, and palmitoyl-L-carnitine (PALC). GJD stimulated the expression of NF-κB. And the overexpressed of NF-κB in mucosa of rat in the GJD group could be inhibited by ZBDHD treatment. Simultaneously, the optimal efficiency of ZBDHD treatment on the cellular ATP content, oxygen consumption rate (OCR), and superoxide dismutase (SOD) concentration was evaluated, in vitro assay. Compared to the control cells, the ATP content, OCR, and SOD activity in the ZBDHD-treated cells were significantly higher. For the mechanisms study, seven cytokines were screened with a Dual-Luciferase Reporter gene assay. In the ARE assay, the luciferase signal was stimulated significantly by ZBDHD. In cells, the transcription of nrf2, maf, and keap1, which were related to the ARE pathway, was elevated by ZBDHD treatment. Our study demonstrated that high-dose GJD could lead to Yinxuhuowang syndrome, such as oral ulcers, and the imbalance in serum metabolites. And ZBDHD can improve oral cell inflammation and the imbalance of metabolism by inhibiting NF-κB and enhancing the activity of the ARE signalling pathway to ameliorate oxidative stress in the cell. This study provides a theoretical basis for the clinical application of ZBDHD

    Transfer from M3B2 boride to BN nitride in 9Cr3W3CoB martensitic heat-resistant steel

    No full text
    Boron is generally added into heat-resistant steel to improve the creep strength. The existence of M3B2 borides and BN nitrides should be avoided due to the consumption of effective B. Before eliminating the harmful borides, it is important to elucidate their thermodynamic behavior during aging. Therefore, the formation of BN nitride in a 9Cr3W3CoB steel during high temperature aging was investigated. It was found that majority of B was presented as M3B2 borides in the as-treated steel. Due to the low content of N and the existence of M3B2 borides, only a few BN nitrides were distributed along PAGBs. Metastable M3B2 borides would gradually dissolve during isothermal exposure and then lead to the precipitation of BN nitride, which has been verified by employing thermo-mechanical treatment (TMT) to eliminate M3B2 borides. It was revealed under scanning electron microscopy (SEM) that BN could not precipitate during high temperature aging in the TMT sample without M3B2 borides. The nucleation and growth of BN nitride was thermodynamic processes affected by both aging time and temperature. Its number density and size increased with increasing aging temperature. During aging at 800 °C, BN nitride nucleated quickly and the shape evolved from subsphaeroidal to irregular even with sharp corners. Unfortunately, the BN particles with sharp corners were detrimental to toughness
    corecore