18 research outputs found
Upper Palaeolithic settlements in Buran-Kaya 3 (Crimea, Ukraine): new interdisciplinary researches of the layers 5-2, 6-1 and 6-2
ΠΡΠΎΡ ΠΡΡΠ°Π½ ΠΠ°Ρ 3 (ΠΡΡΠΌ, Π£ΠΊΡΠ°ΠΈΠ½Π°) ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΡ ΡΡΡΠ°ΡΠΈΠ³ΡΠ°ΡΠΈΡ Π»ΠΈΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΊΡΠ»ΡΡΡΡΠ½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ, Π²ΠΊΠ»ΡΡΠ°ΡΡΡΡ ΠΈΠ½Π΄ΡΡΡΡΠΈΠΈ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΠΈ Π²Π΅ΡΡ
Π½Π΅Π³ΠΎ ΠΏΠ°Π»Π΅ΠΎΠ»ΠΈΡΠ°. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π² ΡΠ»ΠΎΡΡ
5-2, 6-1, ΠΈ 6-2 Π±ΡΠ» ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ ΠΊΡΠ΅ΠΌΠ½Π΅Π²ΡΠΉ ΠΈ ΠΊΠΎΡΡΡΠ½ΠΎΠΉ ΠΈΠ½Π²Π΅Π½ΡΠ°ΡΡ, ΠΎΡΠ½ΠΎΡΡΡΠΈΠΉΡΡ ΠΊ ΡΠΏΠΈΠ³ΡΠ°Π²Π΅ΡΡΡ. ΠΡΠΈ ΠΆΠ΅ ΡΠ»ΠΎΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ ΡΠ°ΡΠ½ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΡΠ°ΡΠΊΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π°Π½ΡΡΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π». Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ±Π»ΠΈΠΊΡΡΡΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ: ΡΠ΅Ρ
Π½ΠΈΠΊΠΎΡΠΈΠΏΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΊΡΠ΅ΠΌΠ½Π΅Π²ΠΎΠ³ΠΎ ΠΈ ΠΊΠΎΡΡΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½Π²Π΅Π½ΡΠ°ΡΡ; Π·ΠΎΠΎΠ°ΡΡ
Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΡΡΠ°Π½ΠΊΠΎΠ² ΠΊΡΡΠΏΠ½ΡΡ
ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡΠ°ΡΡΠΈΡ
; ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π°Π½Π΅ΡΠ΅Π½ΠΈΡ ΠΎΡΠ½Π°ΠΌΠ΅Π½ΡΠ° Π½Π° ΠΊΠΎΡΡΠΈ; Π°Π½Π°Π»ΠΈΠ· ΠΏΠ°Π»Π΅ΠΎΠ°Π½ΡΡΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΡΡΠΎΡΠ½ΠΊΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΡΠ»ΡΡΡΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠΏΠΈΠ³ΡΠ°Π²Π΅ΡΡΠ° ΠΡΡΠ°Π½ ΠΠ°ΠΈ 3 ΠΈ ΠΏΠ°ΠΌΡΡΠ½ΠΈΠΊΠΎΠ² ΡΠΎΡΠ΅Π΄Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ
Upper Palaeolithic settlements in Buran-Kaya 3 (Crimea, Ukraine): new interdisciplinary researches of the layers 5-2, 6-1 and 6-2
ΠΡΠΎΡ ΠΡΡΠ°Π½ ΠΠ°Ρ 3 (ΠΡΡΠΌ, Π£ΠΊΡΠ°ΠΈΠ½Π°) ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΡ ΡΡΡΠ°ΡΠΈΠ³ΡΠ°ΡΠΈΡ Π»ΠΈΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΊΡΠ»ΡΡΡΡΠ½ΡΡ
ΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ, Π²ΠΊΠ»ΡΡΠ°ΡΡΡΡ ΠΈΠ½Π΄ΡΡΡΡΠΈΠΈ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΠΈ Π²Π΅ΡΡ
Π½Π΅Π³ΠΎ ΠΏΠ°Π»Π΅ΠΎΠ»ΠΈΡΠ°. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π² ΡΠ»ΠΎΡΡ
5-2, 6-1, ΠΈ 6-2 Π±ΡΠ» ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ ΠΊΡΠ΅ΠΌΠ½Π΅Π²ΡΠΉ ΠΈ ΠΊΠΎΡΡΡΠ½ΠΎΠΉ ΠΈΠ½Π²Π΅Π½ΡΠ°ΡΡ, ΠΎΡΠ½ΠΎΡΡΡΠΈΠΉΡΡ ΠΊ ΡΠΏΠΈΠ³ΡΠ°Π²Π΅ΡΡΡ. ΠΡΠΈ ΠΆΠ΅ ΡΠ»ΠΎΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ ΡΠ°ΡΠ½ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΡΠ°ΡΠΊΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π°Π½ΡΡΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π». Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ±Π»ΠΈΠΊΡΡΡΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠ΅ΠΆΠ΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ: ΡΠ΅Ρ
Π½ΠΈΠΊΠΎΡΠΈΠΏΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΊΡΠ΅ΠΌΠ½Π΅Π²ΠΎΠ³ΠΎ ΠΈ ΠΊΠΎΡΡΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½Π²Π΅Π½ΡΠ°ΡΡ; Π·ΠΎΠΎΠ°ΡΡ
Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΡΡΠ°Π½ΠΊΠΎΠ² ΠΊΡΡΠΏΠ½ΡΡ
ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡΠ°ΡΡΠΈΡ
; ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π°Π½Π΅ΡΠ΅Π½ΠΈΡ ΠΎΡΠ½Π°ΠΌΠ΅Π½ΡΠ° Π½Π° ΠΊΠΎΡΡΠΈ; Π°Π½Π°Π»ΠΈΠ· ΠΏΠ°Π»Π΅ΠΎΠ°Π½ΡΡΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΡΡΠΎΡΠ½ΠΊΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΡΠ»ΡΡΡΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠΏΠΈΠ³ΡΠ°Π²Π΅ΡΡΠ° ΠΡΡΠ°Π½ ΠΠ°ΠΈ 3 ΠΈ ΠΏΠ°ΠΌΡΡΠ½ΠΈΠΊΠΎΠ² ΡΠΎΡΠ΅Π΄Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΠΈΠΎΠ½Π½ΡΡ ΠΏΠΎΠΌΠ΅Ρ Π² ΡΠΈΡΡΠ΅ΠΌΠ°Ρ ΡΠΈΡΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ Π΄ΠΎΡΡΡΠΏΠ° ΠΏΠΎ ΡΠ΅ΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΊΠΈ ΠΎΡ Π΄Π»ΠΈΠ½Ρ Π»ΠΈΠ½ΠΈΠΈ
ΠΠ°Π½Π° ΡΡΠ°ΡΡΡ ΠΏΡΠΈΡΠ²ΡΡΠ΅Π½Π° Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΡΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΡΠΉΠ½ΠΈΡ
Π·Π°Π²Π°Π΄ Π² Π‘Π (ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡ) BPL, ΡΠΊΡ Π²ΠΈΠ½ΠΈΠΊΠ°ΡΡΡ ΠΏΡΠΈ ΡΠΎΠ±ΠΎΡΡ ΠΏΠΎ Π²ΡΡΡΠΈΠ·Π½ΡΠ½ΠΈΠΌ ΠΌΠ΅ΡΠ΅ΠΆΠ°ΠΌ Π΅Π»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΊΠΈ. ΠΠ°Π²Π΅Π΄Π΅Π½Ρ Ρ ΠΏΡΠΎΠ°Π½Π°Π»ΡΠ·ΠΎΠ²Π°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠΎΠ·ΡΠ°Ρ
ΡΠ½ΠΊΡΠ² Π·Π°Π»Π΅ΠΆΠ½ΠΎΡΡΡ ΡΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΡΠΉΠ½ΠΈΡ
Π·Π°Π²Π°Π΄ Π² Π‘Π BPL Π²ΡΠ΄ Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Ρ ΡΠΈΠΏΡ ΠΠΠ, Π° ΡΠ°ΠΊΠΎΠΆ Π²ΡΠ΄ ΠΌΠΎΠΌΠ΅Π½ΡΡ ΡΠ°ΡΡ ΠΏΠΎΡΠ°ΡΠΊΡ ΠΎΠ±ΡΠΎΠ±ΠΊΠΈ ΡΠΈΠ³Π½Π°Π»Ρ Π² ΠΏΡΠΈΠΉΠΌΠ°ΡΡ.This article is dedicated to research of harmful interference in BPL TS (transmittion system), that appears when TS works on domestic electrical networks. Given and analyzed calculation results of dependance of harmful interference in BPL TS from length of the wire type PPV and from the time moment and the number of start the signal processing in the receiver.ΠΠ°Π½Π½Π°Ρ ΡΡΠ°ΡΡΡ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΠΎΠΌΠ΅Ρ
Π² Π‘Π (ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ) BPL, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΡ
ΠΏΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ ΠΏΠΎ ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΠ΅ΡΡΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΊΠΈ. ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΠΈ ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΠΎΠΌΠ΅Ρ
Π² Π‘Π BPL ΠΎΡ Π΄Π»ΠΈΠ½Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π° ΡΠΈΠΏΠ° ΠΠΠ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΡ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°ΡΠ°Π»Π° ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠΈΠ³Π½Π°Π»Π° Π² ΠΏΡΠΈΠ΅ΠΌΠ½ΠΈΠΊΠ΅
Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΡΠΈΡΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ Π΄ΠΎΡΡΡΠΏΠ° ΠΏΠΎ ΡΠ΅ΡΠΈ Π΄ΠΎΠΌΠΎΠ²ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΊΠΈ
Π ΡΡΠ°ΡΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΡΡΡΡΡ ΡΠ΅Π»Π΅ΠΊΠΎΠΌΡΠ½ΡΠΊΠ°ΡΡΠΉΠ½Π° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΡ PLC (Power Line Communication). ΠΠ°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠΎΠ·ΡΠ°Ρ
ΡΠ½ΠΊΡ ΡΠ°ΡΡΠΎΡΠ½ΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠ΅Π»Π΅ΠΊΠΎΠΌΡΠ½ΡΠΊΠ°ΡΡΠΉΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Ρ, ΡΡΠΎΡΠΌΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π½Π° Π±Π°Π·Ρ ΠΌΠ΅ΡΠ΅ΠΆΡ Π±ΡΠ΄ΠΈΠ½ΠΊΠΎΠ²ΠΎΡ Π΅Π»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΊΠΈ. Π ΠΎΠ·ΡΠ°Ρ
ΠΎΠ²Π°Π½Ρ ΡΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΡΠΉΠ½Ρ Π·Π°Π²Π°Π΄ΠΈ Ρ Π‘Π (ΡΠΈΡΡΠ΅ΠΌΠ° ΠΏΠ΅ΡΠ΅Π΄Π°Π²Π°Π½Π½Ρ) PLC Ρ ΡΠ²ΠΈΠ΄ΠΊΡΡΡΡ ΠΏΠ΅ΡΠ΅Π΄Π°Π²Π°Π½Π½Ρ Π΄Π°Π½ΠΈΡ
, ΡΠΎ ΠΌΠΎΠΆΠ΅ Π±ΡΡΠΈ Π΄ΠΎΡΡΠ³Π½ΡΡΠ° Π·Π° ΡΡΠ·Π½ΠΈΡ
ΡΠΌΠΎΠ².The telecommunication technology PLC (Power Line Communication) is researched in given article. The method of calculation of frequency characteristics of telecommunication channel formed on base of building electric wiring network is proposed. The interference in PLC TS (transmission system) and achieved by PLC TS data transmission rate are calculated for typical network fragment under the different conditions.Π ΡΡΠ°ΡΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΡΡΡ ΡΠ΅Π»Π΅ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½Π°Ρ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡ PLC (Power Line Communication). ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ°ΡΡΠΎΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΊΠ°Π½Π°Π»Π° ΡΠ²ΡΠ·ΠΈ, ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½Π° Π±Π°Π·Π΅ ΡΠ΅ΡΠΈ Π΄ΠΎΠΌΠΎΠ²ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΊΠΈ. Π Π°ΡΡΡΠΈΡΠ°Π½Ρ ΠΈΠ½ΡΠ΅ΡΡΠ΅ΡΠ΅Π½ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΏΠΎΠΌΠ΅Ρ
ΠΈ Π² Π‘Π (ΡΠΈΡΡΠ΅ΠΌΠ° ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ) PLC ΠΈ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π΄Π°Π½Π½ΡΡ
, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π΄ΠΎΡΡΠΈΠ³Π½ΡΡΠ° ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe
Archaeological evidence indicates that pig domestication had begun by βΌ10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers βΌ8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local European wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process
Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe
Archaeological evidence indicates that pig domestication had begun by ~10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ~8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local Euro-pean wild boars, although it is also possible that European wild boars were domesticated independently without any genetic con-tribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process
THE NEOLITHIC OF THE MOUNTAINOUS CRIMEA
This volume contains the majority of the papers presented during a conference that took place on 16th-21st May, 1997 in ΕΓ³dΕΊ, Poland. The conference was organized by the Institute of Archaeology, University of ΕΓ³dΕΊ and DΓ©partement d'anthropologie, UniversitΓ© de Montreal (Canada). The conference was funded by the University of ΕΓ³dΕΊ and by IREX (International Research & Exchanges Board), which also supported this publication. The publication was partly founded by the University of ΕΓ³dΕΊ and by the Foundation of Adam Mickiewicz University, too.
The major questions of the conference were, 1) what is the current evidence for eastern or southern influences in the development of eastern European Mesolithic and Neolithic populations, and 2) to what extent are current political trends, especially the reassertion or, in some cases, the creation of ethnic and national identities, influencing our interpretations of the prehistoric data.
The idea for such a conference came into being through the co-organizers' long-term studies of the development of those prehistoric human populations which inhabited the vast region stretching north and east from the Oder river and Carpathian Mountains to the foothills of the Urals. In a tradition established in modern times by Gordon Childe, virtually all of the transformations of Eastern Europe's Neolithic Age human landscape have been assumed to be responses to prior developments in the Balkan peninsula and Danube basin. We think that a body of new evidence requires a renewed analysis of the distributions of cultural products, peoples, and ideas across Eastern Europe during the Mesolithic through the Early Metal Age within a much wider geographic context than previously has been the case. This includes giving adequate attention to the far-ranging interactions of communities between the Pontic and Baltic area with those located in both the Caucasus and the Aralo-Caspian regions.
We hope that this volume will contribute to such a redirection of future analyses
Modeling the Wetting of Titanium Dioxide and Steel Substrate in Water-borne Paint and Varnish Materials in the Presence of Surfactants
This paper reports the results of studying the effect of two additives such as polyether siloxane (PS) and sodium polyacrylate (SPA) on the wetting of various substrates in water-borne paints (WB paints).
Titanium dioxide (TiO2), paraffin (PA), steel (ST), and glass (GL) were used as solid substrates. The edge wetting angle (ΞΈ0) and the ratio (dCosΞΈ/dΠ‘S) were used as the criterion for assessing the wettability of solid substrates. In aqueous solutions (without acrylic resin), both surfactants improve the wetting of the substrates. For PS, all the substrates studied, depending on ΞΈ depression, can be arranged in a row: ST>PA>GL>TiO2.
For SPA: PA>TiO2>GL>ST. The introduction of an acrylic film-forming agent in the composition enhances the wetting ability of SPA (in comparison with the aqueous solution of surfactants). With an increase in the concentration of SPA from 0 to 4 g/dm3 in acrylic resin solutions, the edge wetting angle of steel decreases by 6Γ·8Β° (while in water by only 3Β°).
With respect to TiO2, the wetting activity of SPA does not depend on the acrylic content of the water. PS in acrylic-containing compositions exhibits worse wetting activity than SPA. The introduction of surfactants in the compositions improves the quality of coatings. With optimal SPA contents in the compositions, the corrosion rate of coatings is reduced (in distilled water by 45 %, in 60 % NaCl solution by 60 %). At the same time, the gloss of coatings increases by 50 % while adhesion increases by 2 points (according to ISO 11845: 2020). This is fully correlated with the nature of the effect of surfactants on the wetting of the steel substrate and pigment (titanium dioxide). Based on probabilistic-deterministic planning, the compositions of WB paints were optimized, ensuring their maximum wetting of TiO2 and ST. Equations for calculating cosΞΈ depending on the content of acrylic polymer and surfactants have been derive