25 research outputs found

    Identification of Active Site Residues Implies a Two-step Catalytic Mechanism for Acyl-ACP Thioesterase

    Get PDF
    In plants and bacteria that use a Type II fatty acid synthase (FAS), isozymes of acyl-acyl carrier protein (ACP) thioesterase (TEs) hydrolyze the thioester bond of acyl-ACPs, terminating the process of fatty acid biosynthesis. These TEs are therefore critical in determining the fatty acid profiles produced by these organisms. Past characterizations of a limited number of plant-sourced acyl-ACP TEs have suggested a thiol-based, papain-like catalytic mechanism, involving a triad of Cys, His, and Asn residues. In this study, sequence alignment of 1019 plant and bacterial acyl-ACP TEs revealed that the previously proposed Cys catalytic residue is not universally conserved and therefore may not be a catalytic residue. Systematic mutagenesis of this residue to either Ser or Ala in three plant acyl-ACP TEs, CvFatB1 and CvFatB2 from Cuphea viscosissima and CnFatB2 from Cocos nucifera, resulted in enzymatically active variants, demonstrating that this Cys residue (Cys348 in CvFatB2) is not catalytic. In contrast, the multiple sequence alignment, together with the structure modeling of CvFatB2 suggest that the highly conserved Asp309 and Glu347, in addition to previously proposed Asn311 and His313, may be involved in catalysis. The substantial loss of catalytic competence associated with site-directed mutants at these positions confirmed the involvement of these residues in catalysis. By comparing the structures of acyl-ACP TE and the Pseudomonas 4-hydroxybenzoyl-CoA TE, both of which fold in the same hot-dog tertiary structure and catalyze the hydrolysis reaction of thioester bond, we have proposed a two-step catalytic mechanism for acyl-ACP TE that involves an enzyme-bound anhydride intermediate

    Subcellular-level resolution MALDI-MS imaging of maize leaf metabolites by MALDI-linear ion trap-Orbitrap mass spectrometer

    Get PDF
    A significant limiting factor in achieving high spatial resolution for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) imaging is the size of the laser spot at the sample surface. Here, we present modifications to the beam-delivery optics of a commercial MALDI-linear ion trap-Orbitrap instrument, incorporating an external Nd:YAG laser, beam-shaping optics, and an aspheric focusing lens, to reduce the minimum laser spot size from ~50 μm for the commercial configuration down to ~9 μm for the modified configuration. This improved system was applied for MALDI-MS imaging of cross sections of juvenile maize leaves at 5-μm spatial resolution using an oversampling method. A variety of different metabolites including amino acids, glycerolipids, and defense-related compounds were imaged at a spatial resolution well below the size of a single cell. Such images provide unprecedented insights into the metabolism associated with the different tissue types of the maize leaf, which is known to asymmetrically distribute the reactions of C4 photosynthesis among the mesophyll and bundle sheath cell types. The metabolite ion images correlate with the optical images that reveal the structures of the different tissues, and previously known and newly revealed asymmetric metabolic features are observed

    Spatial Mapping and Profiling of Metabolite Distributions During Germination

    Get PDF
    Germination is a highly complex process by which seeds begin to develop and establish themselves as viable organisms. In this paper, we utilize a combination of GC-MS, LC-fluorescence, and mass spectrometry imaging (MSI) approaches to profile and visualize the metabolic distributions of germinating seeds from two different inbreds of maize seeds, B73 and Mo17. GC and LC analyses demonstrate that the two inbreds are highly differentiated in their metabolite profiles throughout the course of germination, especially with regard to amino acids, sugar alcohols, and small organic acids. Crude dissection of the seed followed by GC-MS analysis of polar metabolites also revealed that many compounds were highly sequestered among the various seed tissue types. To further localize compounds, matrix-assisted laser desorption/ionization MSI is utilized to visualize compounds in fine detail in their native environments over the course of germination. Most notably, the fatty acyl chain-dependent differential localization of phospholipids and TAGs were observed within the embryo and radicle, showing correlation with the heterogeneous distribution of fatty acids. Other interesting observations include unusual localization of ceramides on the endosperm/scutellum boundary, and subcellular localization of ferulate in the aleurone

    High spatial resolution mass spectrometry imaging reveals the genetically programmed, developmental modification of the distribution of thylakoid membrane lipids among individual cells of maize leaf

    Get PDF
    Metabolism in plants is compartmentalized among different tissues, cells and subcellular organelles. Mass spectrometry imaging (MSI) with matrix-assisted laser desorption ionization (MALDI) has recently advanced to allow for the visualization of metabolites at single cell resolution. Here we applied 5 and 10 m high-spatial resolution MALDI-MSI to the asymmetric Kranz anatomy of maize leaves to study the differential localization of two major anionic lipids in thylakoid membranes, sulfoquinovosyldiacylglycerols (SQDG) and phosphatidylglycerols (PG). The quantification and localization of SQDG and PG molecular species, among mesophyll (M) and bundle sheath (BS) cells, are compared across the leaf developmental gradient from four maize genotypes (the inbreds B73 and Mo17, and reciprocal hybrids B73xMo17 and Mo17xB73). SQDG species are uniformly distributed in both photosynthetic cell types regardless of leaf development or genotype. However, PG shows photosynthetic cell-specific differential localization depending on the genotype and the fatty acyl chain constituent. Overall, 16:1-containing PGs primarily contribute to the thylakoid membranes of M cells while BS chloroplasts are mostly composed of 16:0-containing PGs. Furthermore, PG 32:0 shows genotype-specific differences in cellular distribution, with preferential localization in BS cells for B73, but more uniform distribution between BS and M cells in Mo17. Maternal inheritance is exhibited within the hybrids such that localization of PG 32:0 in B73xMo17 is similar to the distribution in the B73 parental inbred, whereas that of Mo17xB73 resembles the Mo17 parent. This study demonstrates the power of MALDI-MSI to reveal unprecedented insights on metabolic outcomes in multicellular organisms at single cell resolution

    Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids.</p> <p>Results</p> <p>To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their <it>in vivo </it>activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (<it>Elaeis guineensis</it>), coconut (<it>Cocos nucifera</it>) and <it>Cuphea viscosissima</it>, organisms that produce medium-chain and short-chain fatty acids in their seeds. The <it>in vivo </it>substrate specificities of the acyl-ACP TEs were determined in <it>E. coli</it>. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family.</p> <p>Conclusion</p> <p>These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids.</p

    Effects of trans-acting Genetic Modifiers on Meiotic Recombination Across the a1–sh2 Interval of Maize

    No full text
    Meiotic recombination rates are potentially affected by cis- and trans-acting factors, i.e., genotype-specific modifiers that do or do not reside in the recombining interval, respectively. Effects of trans modifiers on recombination across the ∼140-kb maize a1–sh2 interval of chromosome 3L were studied in the absence of polymorphic cis factors in three genetically diverse backgrounds into which a sequence-identical a1–sh2 interval had been introgressed. Genetic distances across a1–sh2 varied twofold among genetic backgrounds. Although the existence of regions exhibiting high and low rates of recombination (hot and cold spots, respectively) was conserved across backgrounds, the absolute rates of recombination in these sequence-identical regions differed significantly among backgrounds. In addition, an intergenic hot spot had a higher rate of recombination as compared to the genome average rate of recombination in one background and not in another. Recombination rates across two genetic intervals on chromosome 1 did not exhibit the same relationships among backgrounds as was observed in a1–sh2. This suggests that at least some detected trans-acting factors do not equally affect recombination across the genome. This study establishes that trans modifier(s) polymorphic among genetic backgrounds can increase and decrease recombination in both genic and intergenic regions over relatively small genetic and physical intervals
    corecore