32 research outputs found

    From Orphan Drugs to Adopted Therapies: Advancing C3-Targeted Intervention to the Clinical Stage

    Get PDF
    Complement dysregulation is increasingly recognized as an important pathogenic driver in a number of clinical disorders. Complement-triggered pathways intertwine with key inflammatory and tissue destructive processes that can either increase the risk of disease or exacerbate pathology in acute or chronic conditions. The launch of the first complement-targeted drugs in the clinic has undeniably stirred the field of complement therapeutic design, providing new insights into complement\u27s contribution to disease pathogenesis and also helping to leverage a more personalized, comprehensive approach to patient management. In this regard, a rapidly expanding toolbox of complement therapeutics is being developed to address unmet clinical needs in several immune-mediated and inflammatory diseases. Elegant approaches employing both surface-directed and fluid-phase inhibitors have exploited diverse components of the complement cascade as putative points of therapeutic intervention. Targeting C3, the central hub of the system, has proven to be a promising strategy for developing biologics as well as small-molecule inhibitors with clinical potential. Complement modulation at the level of C3 has recently shown promise in preclinical primate models, opening up new avenues for therapeutic intervention in both acute and chronic indications fueled by uncontrolled C3 turnover. This review highlights recent developments in the field of complement therapeutics, focusing on C3-directed inhibitors and alternative pathway (AP) regulator-based approaches. Translational perspectives and considerations are discussed, particularly with regard to the structure-guided drug optimization and clinical advancement of a new generation of C3-targeted peptidic inhibitors

    Mice with Mutation in Dynein Heavy Chain 1 Do Not Share the Same Tau Expression Pattern with Mice with SOD1-Related Motor Neuron Disease

    Get PDF
    Due to controversy about the involvement of Dync1h1 mutation in pathogenesis of motor neuron disease, we investigated expression of tau protein in transgenic hybrid mice with Dync1h1 (so-called Cra1/+), SOD1G93A (SOD1/+), double (Cra1/SOD1) mutations and wild-type controls. Total tau-mRNA and isoforms 0, 1 and 2 N expression was studied in frontal cortex, hippocampus, spinal cord and cerebellum of presymptomatic and symptomatic animals (age 70, 140 and 365 days). The most significant differences were found in brain cortex and cerebellum, but not in hippocampus and spinal cord. There were less changes in Cra1/SOD1 double heterozygotes compared to mice harboring single mutations. The differences in total tau expression and in profile of its isoforms between Cra1/+ and SOD1/+ transgenics indicate a distinct pathogenic entity of these two conditions

    Similar early clinical presentations in familial and non-familial frontotemporal dementia

    No full text
    Objective: To compare the clinical features of FTD cases who have tau gene mutations with those of cases with a family history of FTD but no tau gene mutation, and with sporadic cases with neither feature. Methods and results: Comparisons of the behavioural, cognitive, and motor features in 32 FTD patients (five positive for tau gene mutations, nine familial but tau negative, and 18 tau negative sporadic) showed that age of onset and duration to diagnosis did not differ between the groups. Apathy was not observed in tau mutation positive cases, and dysexecutive signs were more frequent in familial tau mutation negative cases. Memory deficits and behavioural changes were common in all groups. Conclusions: In comparison with other neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease, neither tau gene mutations nor strong familial associations confer earlier disease susceptibility
    corecore