5 research outputs found

    Online At-Risk Student Identification using RNN-GRU Joint Neural Networks

    No full text
    Although online learning platforms are gradually becoming commonplace in modern society, learners’ high dropout rates and serious academic performance require more attention within the virtual learning environment (VLE). This study aims to predict students’ performance in a specific course as it is continuously running, using the statistic personal biographical information and sequential behavior data with VLE. To achieve this goal, a novel recurrent neural network (RNN)-gated recurrent unit (GRU) joint neural network is proposed to fit both static and sequential data, where the data completion mechanism is also adopted to fill the missing stream data. To incorporate the sequential relationship of learning data, three kinds of time-series deep neural network algorithms: simple RNN, GRU, and LSTM are first taken into consideration as baseline models. Their performances are compared in identifying at-risk students. Experimental results on Open University Learning Analytics Dataset (OULAD) show that simple methods like GRU and simple RNN have better results than the relatively complex LSTM model. The results also reveal that different models have different peak performance time, which results in the proposed joint model that achieves over 80% prediction accuracy of at-risk students at the end of the semester

    Progressive Teaching Improvement For Small Scale Learning: A Case Study in China

    No full text
    Learning data feedback and analysis have been widely investigated in all aspects of education, especially for large scale remote learning scenario like Massive Open Online Courses (MOOCs) data analysis. On-site teaching and learning still remains the mainstream form for most teachers and students, and learning data analysis for such small scale scenario is rarely studied. In this work, we first develop a novel user interface to progressively collect students’ feedback after each class of a course with WeChat mini program inspired by the evaluation mechanism of most popular shopping website. Collected data are then visualized to teachers and pre-processed. We also propose a novel artificial neural network model to conduct a progressive study performance prediction. These prediction results are reported to teachers for next-class and further teaching improvement. Experimental results show that the proposed neural network model outperforms other state-of-the-art machine learning methods and reaches a precision value of 74.05% on a 3-class classifying task at the end of the term
    corecore