614 research outputs found

    Disordered Fulde-Ferrel-Larkin-Ovchinnikov State in d-wave Superconductors

    Full text link
    We study the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in the disordered systems. We analyze the microscopic model, in which the d-wave superconductivity is stabilized near the antiferromagnetic quantum critical point, and investigate two kinds of disorder, namely, box disorder and point disorder, on the basis of the Bogoliubov-deGennes (BdG) equation. The spatial structure of modulated superconducting order parameter and the magnetic properties in the disordered FFLO state are investigated. We point out the possibility of "FFLO glass" state in the presence of strong point disorders, which arises from the configurational degree of freedom of FFLO nodal plane. The distribution function of local spin susceptibility is calculated and its relation to the FFLO nodal plane is clarified. We discuss the NMR measurements for CeCoIn_5.Comment: Submitted to New. J. Phys. a focus issue on "Superconductors with Exotic Symmetries

    Testing Higgs models via the H±WZH^\pm W^\mp Z vertex by a recoil method at the International Linear Collider

    Full text link
    In general, charged Higgs bosons H±H^\pm appear in non-minimal Higgs models. The H±WZH^\pm W^\mp Z vertex is known to be related to the violation of the global symmetry (custodial symmetry) in the Higgs sector. Its magnitude strongly depends on the structure of the exotic Higgs models which contain higher isospin SU(2)LSU(2)_L representations such as triplet Higgs bosons. We study the possibility of measuring the H±WZH^\pm W^\mp Z vertex via single charged Higgs boson production associated with the W±W^\pm boson at the International Linear Collider (ILC) by using the recoil method. The feasibility of the signal e+eH±Wνjje^+e^-\to H^\pm W^\mp \to \ell \nu jj is analyzed assuming the polarized electron and positron beams and the expected detector performance for the resolution of the two-jet system at the ILC. The background events can be reduced to a considerable extent by imposing the kinematic cuts even if we take into account the initial state radiation. For a relatively light charged Higgs boson whose mass mH±m_{H^\pm} is in the region of 120-130 GeV <mH±<mW+mZ< m_{H^\pm} < m_W+m_Z, the H±WZH^\pm W^\mp Z vertex would be precisely testable especially when the decay of H±H^\pm is lepton specific. The exoticness of the extended Higgs sector can be explored by using combined information for this vertex and the rho parameter.Comment: 22 pages, 23 figure

    Antiferromagnetic Phases in the Fulde-Ferrell-Larkin-Ovchinnikov State of CeCoIn_5

    Full text link
    The antiferromagnetic (AFM) order in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state is analyzed on the basis of a Ginzburg-Landau theory. To examine the possible AFM-FFLO state in CeCoIn_5, we focus on the incommensurate AFM order characterized by the wave vector Q = Q_{0} \pm q_inc with Q_0 =(\pi,\pi,\pi) and q_inc \parallel [110] or [1-10] in the tetragonal crystal structure. We formulate the two component Ginzburg-Landau theory and investigate the two degenerate incommensurate AFM order. We show that the pinning of AFM moment due to the FFLO nodal planes leads to multiple phases in magnetic fields along [100] or [010]. The phase diagrams for various coupling constants between the two order parameters are shown for the comparison with CeCoIn_5. Experimental results of the NMR and neutron scattering measurements are discussed.Comment: 6pages, Proceedings of ICHE2010, To appear in J. Phys. Soc. Jpn. Supp

    Antiferromagnetic Order and \pi-triplet Pairing in the Fulde-Ferrell-Larkin-Ovchinnikov State

    Full text link
    The antiferromagnetic Fulde-Ferrell-Larkin-Ovchinnikov (AFM-FFLO) state of coexisting d-wave FFLO superconductivity and incommensurate AFM order is studied on the basis of Bogoliubov-de Gennes (BdG) equations. We show that the incommensurate AFM order is stabilized in the FFLO state by the appearance of the Andreev bound state localized around the zeros of the FFLO order parameter. The AFM-FFLO state is further enhanced by the induced \pi-triplet superconductivity (pair density wave). The AFM order occurs in the FFLO state even when it is neither stable in the normal state nor in the BCS state. The order parameters of the AFM order, d-wave superconductivity, and \pi-triplet pairing are investigated by focusing on their spatial structures. Roles of the spin fluctuations beyond the BdG equations are discussed. Their relevance to the high-field superconducting phase of CeCoIn_5 is discussed.Comment: Typos are fixed. Published versio

    Ginzburg-Landau Analysis for the Antiferromagnetic Order in the Fulde-Ferrell-Larkin-Ovchinnikov Superconductor

    Full text link
    Incommensurate antiferromangetic (AFM) order in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductor is investigated on the basis of the Ginzburg-Landau theory. We formulate the two component Ginzburg-Landau model to discuss two degenerate incommensurate AFM states in the tetragonal crystal structure. Owing to the broken translation symmetry in the FFLO state, a multiple phase diagram of single-q phase and double-q phase is obtained under the magnetic field along [100] or [010] direction. Magnetic properties in each phase are investigated and compared with the neutron scattering and NMR measurements for a heavy fermion superconductor CeCoIn_5. An ultrasonic measurement is proposed for a future experimental study to identify the AFM-FFLO state. The field orientation dependence of the AFM order in CeCoIn_5 is discussed.Comment: 8 page

    Superconductivity and Local Inversion-Symmetry Breaking

    Get PDF

    Superconductivity and Local Inversion-Symmetry Breaking

    Full text link
    Inversion and time reversal are essential symmetries for the structure of Cooper pairs in superconductors. The loss of one or both leads to modifications to this structure and can change the properties of the superconducting phases in profound ways. Lacking inversion, superconductivity in noncentrosymmetric materials has become an important topic, in particular, in the context of topological superconductivity as well as unusual magnetic and magneto-electric properties. Recently, crystal structures with local, but not global inversion-symmetry breaking have attracted attention, as superconductivity can exhibit phenomena not naively expected in centrosymmetric materials. After introducing the concept of locally noncentrosymmetric crystals and different material realizations, we discuss consequences of such local symmetry breaking on the classification, the expected and, in parts, already observed phenomenology of unconventional superconductivity, and possible topological superconducting phases.Comment: 21 pages, 5 figures. Submitted to Annual Reviews of Condensed Matter Physic

    Effects of proximity to an electronic topological transition on normal state transport properties of the high-Tc superconductors

    Full text link
    Within the time dependent Ginzburg-Landau theory, the effects of the superconducting fluctuations on the transport properties above the critical temperature are characterized by a non-zero imaginary part of the relaxation rate gamma of the order parameter. Here, we evaluate Im gamma for an anisotropic dispersion relation typical of the high-Tc cuprate superconductors (HTS), characterized by a proximity to an electronic topological transition (ETT). We find that Im gamma abruptly changes sign at the ETT as a function of doping, in agreement with the universal behavior of the HTS. We also find that an increase of the in-plane anisotropy, as is given by a non-zero value of the next-nearest to nearest hopping ratio r=t'/t, increases the value of | Im gamma | close to the ETT, as well as its singular behavior at low temperature, therefore enhancing the effect of superconducting fluctuations. Such a result is in qualitative agreement with the available data for the excess Hall conductivity for several cuprates and cuprate superlattices.Comment: to appear in Phys. Rev.

    Reduction of Tc due to Impurities in Cuprate Superconductors

    Full text link
    In order to explain how impurities affect the unconventional superconductivity, we study non-magnetic impurity effect on the transition temperature using on-site U Hubbard model within a fluctuation exchange (FLEX) approximation. We find that in appearance, the reduction of Tc roughly coincides with the well-known Abrikosov-Gor'kov formula. This coincidence results from the cancellation between two effects; one is the reduction of attractive force due to randomness, and another is the reduction of the damping rate of quasi-particle arising from electron interaction. As another problem, we also study impurity effect on underdoped cuprate as the system showing pseudogap phenomena. To the aim, we adopt the pairing scenario for the pseudogap and discuss how pseudogap phenomena affect the reduction of Tc by impurities. We find that 'pseudogap breaking' by impurities plays the essential role in underdoped cuprate and suppresses the Tc reduction due to the superconducting (SC) fluctuation.Comment: 14 pages, 28 figures To be published in JPS

    Fourth Order Perturbation Theory for Normal Selfenergy in Repulsive Hubbard Model

    Full text link
    We investigate the normal selfenergy and the mass enhancement factor in the Hubbard model on the two-dimensional square lattice. Our purpose in this paper is to evaluate the mass enhancement factor more quantitatively than the conventional third order perturbation theory. We calculate it by expanding perturbatively up to the fourth order with respect to the on-site repulsion UU. We consider the cases that the system is near the half-filling, which are similar situations to high-TcT_c cuprates. As results of the calculations, we obtain the large mass enhancement on the Fermi surface by introducing the fourth order terms. This is mainly originated from the fourth order particle-hole and particle-particle diagrams. Although the other fourth order terms have effect of reducing the effective mass, this effect does not cancel out the former mass enhancement completely and there remains still a large mass enhancement effect. In addition, we find that the mass enhancement factor becomes large with increasing the on-site repulsion UU and the density of state (DOS) at the Fermi energy ρ(0)\rho(0). According to many current reseaches, such large UU and ρ(0)\rho(0) enhance the effective interaction between quasiparticles, therefore the superconducting transition temperature TcT_c increases. On the other hand, the large mass enhancement leads the reduction of the energy scale of quasiparticles, as a result, TcT_c is reduced. When we discuss TcT_c, we have to estimate these two competitive effects.Comment: 6pages,8figure
    corecore