217 research outputs found
Scene Consistency Representation Learning for Video Scene Segmentation
A long-term video, such as a movie or TV show, is composed of various scenes,
each of which represents a series of shots sharing the same semantic story.
Spotting the correct scene boundary from the long-term video is a challenging
task, since a model must understand the storyline of the video to figure out
where a scene starts and ends. To this end, we propose an effective
Self-Supervised Learning (SSL) framework to learn better shot representations
from unlabeled long-term videos. More specifically, we present an SSL scheme to
achieve scene consistency, while exploring considerable data augmentation and
shuffling methods to boost the model generalizability. Instead of explicitly
learning the scene boundary features as in the previous methods, we introduce a
vanilla temporal model with less inductive bias to verify the quality of the
shot features. Our method achieves the state-of-the-art performance on the task
of Video Scene Segmentation. Additionally, we suggest a more fair and
reasonable benchmark to evaluate the performance of Video Scene Segmentation
methods. The code is made available.Comment: Accepted to CVPR 202
The preservation of right cingulum fibers in subjective cognitive decline of preclinical phase of Alzheimer’s disease
IntroductionSubjective cognitive decline (SCD) with a positive amyloid burden has been recognized as the earliest clinical symptom of the preclinical phase of Alzheimers disease (AD), providing invaluable opportunities to improve our understanding of the natural history of AD and determine strategies for early therapeutic interventions.MethodsThe microstructure of white matter in patients showing SCD in the preclinical phase of AD (SCD of pre-AD) was evaluated using diffusion images, and voxel-wise fractional anisotropy (FA), mean diffusivity (MD), and axial and radial diffusivities were assessed and compared among participant groups. Significant clusters in the tracts were extracted to determine their associations with alterations in the cognitive domains.ResultsWe found that individuals with SCD of pre-AD may have subclinical episodic memory impairment associated with the global amyloid burden. Meanwhile, we found significantly reduced FA and λ1 in the right cingulum (cingulate and hippocampus) in AD dementia, while significantly increased FA and decreased MD as well as λ23 in the SCD of pre-AD group in comparison with the HC group.DiscussionIn conclusion, increased white matter microstructural integrity in the right cingulum (cingulate and hippocampus) may indicate compensation for short-term episodic memory in individuals with SCD of pre-AD in comparison with individuals with AD and healthy elderly individuals
Rotational symmetry breaking in superconducting nickelate Nd0.8Sr0.2NiO2 films
The infinite-layer nickelates, isostructural to the high-Tc superconductor
cuprates, have risen as a promising platform to host unconventional
superconductivity and stimulated growing interests in the condensed matter
community. Despite numerous researches, the superconducting pairing symmetry of
the nickelate superconductors, the fundamental characteristic of a
superconducting state, is still under debate. Moreover, the strong electronic
correlation in the nickelates may give rise to a rich phase diagram, where the
underlying interplay between the superconductivity and other emerging quantum
states with broken symmetry is awaiting exploration. Here, we study the angular
dependence of the transport properties on the infinite-layer nickelate
Nd0.8Sr0.2NiO2 superconducting films with Corbino-disk configuration. The
azimuthal angular dependence of the magnetoresistance (R({\phi})) manifests the
rotational symmetry breaking from isotropy to four-fold (C4) anisotropy with
increasing magnetic field, revealing a symmetry breaking phase transition.
Approaching the low temperature and large magnetic field regime, an additional
two-fold (C2) symmetric component in the R({\phi}) curves and an anomalous
upturn of the temperature-dependent critical field are observed simultaneously,
suggesting the emergence of an exotic electronic phase. Our work uncovers the
evolution of the quantum states with different rotational symmetries and
provides deep insight into the global phase diagram of the nickelate
superconductors
Rotational Symmetry Breaking in Superconducting Nickelate Nd0.8Sr0.2NiO2 Films
The infinite-layer nickelates, isostructural to the high-Tc cuprate superconductors, have emerged as a promising platform to host unconventional superconductivity and stimulated growing interest in the condensed matter community. Despite considerable attention, the superconducting pairing symmetry of the nickelate superconductors, the fundamental characteristic of a superconducting state, is still under debate. Moreover, the strong electronic correlation in the nickelates may give rise to a rich phase diagram, where the underlying interplay between the superconductivity and other emerging quantum states with broken symmetry is awaiting exploration. Here, we study the angular dependence of the transport properties of the infinite-layer nickelate Nd0.8Sr0.2NiO2 superconducting films with Corbino-disk configuration. The azimuthal angular dependence of the magnetoresistance (R(φ)) manifests the rotational symmetry breaking from isotropy to four-fold (C4) anisotropy with increasing magnetic field, revealing a symmetry-breaking phase transition. Approaching the low-temperature and large-magnetic-field regime, an additional two-fold (C2) symmetric component in the R(φ) curves and an anomalous upturn of the temperature-dependent critical field are observed simultaneously, suggesting the emergence of an exotic electronic phase. Our work uncovers the evolution of the quantum states with different rotational symmetries in nickelate superconductors and provides deep insight into their global phase diagram
Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.
Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-Îł exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy
N-Acetylcysteine and Allopurinol Synergistically Enhance Cardiac Adiponectin Content and Reduce Myocardial Reperfusion Injury in Diabetic Rats
Background: Hyperglycemia-induced oxidative stress plays a central role in the development of diabetic myocardial complications. Adiponectin (APN), an adipokine with anti-diabetic and anti-ischemic effects, is decreased in diabetes. It is unknown whether or not antioxidant treatment with N-acetylcysteine (NAC) and/or allopurinol (ALP) can attenuate APN deficiency and myocardial ischemia reperfusion (MI/R) injury in the early stage of diabetes. Methodology/Principal Findings: Control or streptozotocin (STZ)-induced diabetic rats were either untreated (C, D) or treated with NAC (1.5 g/kg/day) or ALP (100 mg/kg/day) or their combination for four weeks starting one week after STZ injection. Plasma and cardiac biochemical parameters were measured after the completion of treatment, and the rats were subjected to MI/R by occluding the left anterior descending artery for 30 min followed by 2 h reperfusion. Plasma and cardiac APN levels were decreased in diabetic rats accompanied by decreased cardiac APN receptor 2 (AdipoR2), reduced phosphorylation of Akt, signal transducer and activator of transcription 3 (STAT3) and endothelial nitric oxide synthase (eNOS) but increased IL-6 and TNF-α (all P<0.05 vs. C). NAC but not ALP increased cardiac APN concentrations and AdipoR2 expression in diabetic rats. ALP enhanced the effects of NAC in restoring cardiac AdipoR2 and phosphorylation of Akt, STAT3 and eNOS in diabetic rats. Further, NAC and ALP, respectively, decreased postischemic myocardial infarct size and creatinine kinase-MB (CK-MB) release in diabetic rats, while their combination conferred synergistic protective effects. In addition, exposure of cultured rat cardiomyocytes to high glucose resulted in significant reduction of cardiomyocyte APN concentration and AdipoR2 protein expression. APN supplementation restored high glucose induced AdipoR2 reduction in cardiomyocytes. Conclusions/Significance: NAC and ALP synergistically restore myocardial APN and AdipoR2 mediated eNOS activation. This may represent the mechanism through which NAC and ALP combination greatly reduces MI/R injury in early diabetic rats. © 2011 Wang et al.published_or_final_versio
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
- …