79 research outputs found

    A Cosynthesis Algorithm for Application Specific Processors with Heterogeneous Datapaths

    Get PDF

    Experimental Evaluation of High-Level Energy Optimization Based on Thread Partitioning

    Get PDF

    Instruction Set and Functional Unit Synthesis for SIMD Processor Cores

    Get PDF

    FCSCAN: An Efficient Multiscan-based Test Compression Technique for Test Cost Reduction

    Get PDF

    A hardware/software partitioning algorithm for SIMD processor cores

    Get PDF

    A Reconfigurable Adaptive FEC System for Reliable Wireless Communications

    Get PDF

    Multistep Engineering of Pyrrolysyl-tRNA Synthetase to Genetically Encode Nɛ-(o-Azidobenzyloxycarbonyl) lysine for Site-Specific Protein Modification

    Get PDF
    SummaryPyrrolysyl-tRNA synthetase (PylRS) esterifies pyrrolysine to tRNAPyl. In this study, Nɛ-(tert-butyloxycarbonyl)-L-lysine (BocLys) and Nɛ-allyloxycarbonyl-L-lysine (AlocLys) were esterified to tRNAPyl by PylRS. Crystal structures of a PylRS catalytic fragment complexed with BocLys and an ATP analog and with AlocLys-AMP revealed that PylRS requires an Nɛ-carbonyl group bearing a substituent with a certain size. A PylRS(Y384F) mutant obtained by random screening exhibited higher in vitro aminoacylation and in vivo amber suppression activities with BocLys, AlocLys, and pyrrolysine than those of the wild-type PylRS. Furthermore, the structure-based Y306A mutation of PylRS drastically increased the in vitro aminoacylation activity for Nɛ-benzyloxycarbonyl-L-lysine (ZLys). A PylRS with both the Y306A and Y384F mutations enabled the large-scale preparation (>10 mg per liter medium) of proteins site-specifically containing Nɛ-(o-azidobenzyloxycarbonyl)-L-lysine (AzZLys). The AzZLys-containing protein was labeled with a fluorescent probe, by Staudinger ligation

    An Efficient Algorithm/Architecture Codesign for Image Encoders

    Get PDF
    corecore