3 research outputs found
Photocatalytic Bacterial Inactivation of Acinetobacter baumannli on Cu/TiO2/Diatomite
Cu4Ti2O/TiO2/diatomite with double interface Cu4Ti2O/TiO2 and rutile/anatase heterojunction were fabricated, which demonstrated good antibacterial activity (100%) against Acinetobacter baumannii. Cu/TiO2/diatomite prepared under optimum preparation conditions (added diatomite, 0.005 g; Cu, 0.005 g; reaction temperature, 180 °C; reaction time, 8 h) exhibited high antibacterial activity (100%) against A. baumannii. For the Cu/TiO2/diatomite powders, their structural, compositional, optical and morphological traits were characterized by XRD, SEM, TEM, XPS, BET, FTIR, Mapping, and DRS. It was shown that Cu/TiO2/diatomite under optimum conditions consisted of the double interface Cu4Ti2O/TiO2 and rutile/anatase heterojunction with the narrowest band gap and largest BET surface area, pore size, and pore volume. Then, it could exhibit the best photocatalytic activity
Photocatalytic Bacterial Inactivation of <i>Acinetobacter baumannli</i> on Cu/TiO<sub>2</sub>/Diatomite
Cu4Ti2O/TiO2/diatomite with double interface Cu4Ti2O/TiO2 and rutile/anatase heterojunction were fabricated, which demonstrated good antibacterial activity (100%) against Acinetobacter baumannii. Cu/TiO2/diatomite prepared under optimum preparation conditions (added diatomite, 0.005 g; Cu, 0.005 g; reaction temperature, 180 °C; reaction time, 8 h) exhibited high antibacterial activity (100%) against A. baumannii. For the Cu/TiO2/diatomite powders, their structural, compositional, optical and morphological traits were characterized by XRD, SEM, TEM, XPS, BET, FTIR, Mapping, and DRS. It was shown that Cu/TiO2/diatomite under optimum conditions consisted of the double interface Cu4Ti2O/TiO2 and rutile/anatase heterojunction with the narrowest band gap and largest BET surface area, pore size, and pore volume. Then, it could exhibit the best photocatalytic activity