2,925 research outputs found
Localization and Mobility Gap in Topological Anderson Insulator
It has been proposed that disorder may lead to a new type of topological
insulator, called topological Anderson insulator (TAI). Here we examine the
physical origin of this phenomenon. We calculate the topological invariants and
density of states of disordered model in a super-cell of 2-dimensional
HgTe/CdTe quantum well. The topologically non-trivial phase is triggered by a
band touching as the disorder strength increases. The TAI is protected by a
mobility gap, in contrast to the band gap in conventional quantum spin Hall
systems. The mobility gap in the TAI consists of a cluster of non-trivial
subgaps separated by almost flat and localized bands.Comment: 8 pages, 7 figure
Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement
We present a way for symmetric multiparty-controlled teleportation of an
arbitrary two-particle entangled state based on Bell-basis measurements by
using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an
arbitrary two-particle entangled state to a distant receiver, an arbitrary one
of the agents via the control of the others in a network. It will be
shown that the outcomes in the cases that is odd or it is even are
different in principle as the receiver has to perform a controlled-not
operation on his particles for reconstructing the original arbitrary entangled
state in addition to some local unitary operations in the former. Also we
discuss the applications of this controlled teleporation for quantum secret
sharing of classical and quantum information. As all the instances can be used
to carry useful information, its efficiency for qubits approaches the maximal
value.Comment: 9 pages, 3 figures; the revised version published in Physical Review
A 72, 022338 (2005). The detail for setting up a GHZ-state quantum channel is
adde
Cosmic positron and antiproton constraints on the gauge-Higgs Dark Matter
We calculate the cosmic ray positron and antiproton spectra of a gauge-Higgs
dark matter candidate in a warped five-dimensional
gauge-Higgs unification model. The stability of the gauge-Higgs boson is
guaranteed by the H parity under which only the Higgs boson is odd at low
energy. The 4-point vertices of HHW^+W^- and HHZZ, allowed by H parity
conservation, have the same magnitude as in the standard model, which yields
efficient annihilation rate for . The most dominant annihilation
channel is followed by the subsequent decays of the
bosons into positrons or quarks, which undergo fragmentation into antiproton.
Comparing with the observed positron and antiproton spectra with the PAMALA and
Fermi/LAT, we found that the Higgs boson mass cannot be larger than 90 GeV, in
order not to overrun the observations. Together with the constraint on not
overclosing the Universe, the valid range of the dark matter mass is restricted
to 70-90 GeV.Comment: 13 pages, 3 figure
Dirac quasinormal modes of a Schwarzschild black hole surrounded by free static spherically symmetric quintessence
We evaluate the quasinormal modes of massless Dirac perturbation in a
Schwarzschild black hole surrounded by the free static spherically symmetric
quintessence by using the third-order WKB approximation. The result shows that
due to the presence of quintessence, the massless field damps more slowly. The
real part of the quasinormal modes increases and the the absolute value of the
imaginary part increases when the state parameter increases. In other
words, the massless Dirac field decays more rapidly for the larger . And
the peak value of potential barrier gets higher as increases and the
location of peak moves along the right for fixed .Comment: 7 pages, 4 figure
- …