2,125 research outputs found

    Safety and efficacy of etomidate and propofol anesthesia in elderly patients undergoing gastroscopy: A double-blind randomized clinical study

    Get PDF
    The aim of the present study is to compare the safety, efficacy and cost effectiveness of anesthetic regimens by compound, using etomidate and propofol in elderly patients undergoing gastroscopy. A total of 200 volunteers (65–79 years of age) scheduled for gastroscopy under anesthesia were randomly divided into the following groups: P, propofol (1.5–2.0 mg/kg); E, etomidate (0.15-0.2 mg/kg); P+E, propofol (0.75–1 mg/kg) followed by etomidate (0.075-0.1 mg/kg); and E+P, etomidate (0.075-0.01 mg/kg) followed by propofol (0.75–1 mg/kg). Vital signs and bispectral index were monitored at different time points. Complications, induction and examination time, anesthesia duration, and recovery and discharge time were recorded. At the end of the procedure, the satisfaction of patients, endoscopists and the anesthetist were evaluated. The recovery (6.1±1.2 h) and discharge times (24.8±2.8 h) in group E were significantly longer compared with groups P, P+E and E+P (P<0.05). The occurrence of injection pain in group P+E was significantly higher compared with the other three groups (P<0.05). In addition, the incidence of myoclonus and post-operative nausea and vomiting were significantly higher in group P+E compared with the other three groups (P<0.05). There was no statistical difference among the four groups with regards to the patients' immediate, post-procedure satisfaction (P>0.05). Furthermore, there was no difference in the satisfaction of anesthesia, as evaluated by the anesthetist and endoscopist, among the four groups (P>0.05). The present study demonstrates that anesthesia for gastroscopy in elderly patients can be safely and effectively accomplished using a drug regimen that combines propofol with etomidate. The combined use of propofol and etomidate has unique characteristics which improve hemodynamic stability, cause minimal respiratory depression and less side effects, provide rapid return to full activity and result in high levels of satisfaction

    catena-Poly[[[1,2-bis­(benzimidazol-2-yl)ethane]cadmium(II)]-μ-sebacato]

    Get PDF
    In the title compound, [Cd(C10H16O4)(C16H14N4)]n, the CdII ion is six-coordinated in a distorted octa­hedral geometry by four carboxyl­ate O atoms from two sebacate ligands and two N atoms from the chelating 1,4-bis­(2-benzimidazol­yl)ethanebutane ligand. Neighboring CdII ions are bridged by the sebacate ligands, forming a zigzag polymeric chain structure. The chains are further extended into a three-dimensional supra­molecular structure through inter­molecular N—H⋯O hydrogen bonds

    Cold hardiness of Phauda flammans (Lepidoptera: Zygaenidae) larvae

    Get PDF
    This study aimed to determine the cold hardiness of Phauda flammans (Lepidoptera: Zygaenidae) larvae. Supercooling points of the 1st–6th instar larvae of P. flammans ranged from –7.7 to –13.0 °C. The lethal temperatures were –8 °C for 1st, –5 °C for 2nd, and –7 °C for 3rd–6th instars. Lethal times at the instar-specific lethal temperatures were 12 h for 1st, 14 h for 2nd, 15 h for 3rd, 17 h for 4th, and 18 h for 5th–6th instars. The times required for all larvae to die in an incubator at 5 °C were 30 d for 1st, 3rd, 4th, and 5th instars, and 25 d for 2nd and 6th instars. The findings suggest that P. flammans is a chill-intolerant species, and larvae will die if the air temperature decreases to –5 to –8 °C for 12–18 h or to 5 °C for 25–30 d. Such conditions are, however, unlikely to occur in southern China

    Regeneration of Spent Lubricant Refining Clays by Solvent Extraction

    Get PDF
    Step-by-step solvent extraction was used to regenerate spent clay by recovering the adsorbed oil in lubricating oil refining clay. Several polar and nonpolar solvents were tested, and petroleum ether (90–120°C) and ethanol (95 v%) were selected as the nonpolar and polar solvents, respectively. The spent clay was first extracted using petroleum ether (90–120°C) to obtain ideal oil and then extracted with a mixed solvent of petroleum ether (90–120°C) and ethanol (95 v%) two or three times to obtain nonideal oil before being extracted with ethanol and water. Finally, the clay was dried at 130°C to obtain regenerated clay. The total oil recovery can be more than 99 wt% of the adsorbed oil. The recovered ideal oil can be used as lubricating base oil. Shorter storage times for spent clay produce better regeneration results. The regenerated clay can be reused to refine the lubricating base oils
    • …
    corecore