78,630 research outputs found

    Spin-filtered and Spatially Distinguishable Crossed Andreev Reflection in a Silicene-Superconductor Junction

    Full text link
    We theoretically investigate the quantum transports in a junction between a superconductor and a silicene nanoribbon, under the effect of a magnetic exchange field. We find that for a narrow nanoribbon of silicene, remarkable crossed Andreev reflection (with a fraction >50%>50\%) can be induced in the energy window of the elastic cotunneling, by destroying some symmetries of the system. Since the energy responses of electrons to the exchange field are opposite for opposite spins, these transport channels can be well spin polarized. Moreover, due to the helicity conservation of the topological edge states, these three transport channels are spatially separated in three different locations of the device, making them experimentally distinguishable. This crossed Andreev reflection is a nonlocal quantum interference between opposite edges through evanescent modes. If two superconducting leads with different phases are connected to two edges of the silicene nanoribbon, the crossed Andreev reflection can present Josephson type oscillations, with a maximal fraction ∼100%\sim 100\%.Comment: 8 pages, 7 figure

    Graphs with 3-rainbow index nβˆ’1n-1 and nβˆ’2n-2

    Full text link
    Let GG be a nontrivial connected graph with an edge-coloring c:E(G)β†’{1,2,…,q},c:E(G)\rightarrow \{1,2,\ldots,q\}, q∈Nq\in \mathbb{N}, where adjacent edges may be colored the same. A tree TT in GG is a rainbowtreerainbow tree if no two edges of TT receive the same color. For a vertex set SβŠ†V(G)S\subseteq V(G), the tree connecting SS in GG is called an SS-tree. The minimum number of colors that are needed in an edge-coloring of GG such that there is a rainbow SS-tree for each kk-set SS of V(G)V(G) is called the kk-rainbow index of GG, denoted by rxk(G)rx_k(G). In \cite{Zhang}, they got that the kk-rainbow index of a tree is nβˆ’1n-1 and the kk-rainbow index of a unicyclic graph is nβˆ’1n-1 or nβˆ’2n-2. So there is an intriguing problem: Characterize graphs with the kk-rainbow index nβˆ’1n-1 and nβˆ’2n-2. In this paper, we focus on k=3k=3, and characterize the graphs whose 3-rainbow index is nβˆ’1n-1 and nβˆ’2n-2, respectively.Comment: 14 page

    On Channel Reciprocity to Activate Uplink Channel Training for Downlink Wireless Transmission in Tactile Internet Applications

    Full text link
    We determine, for the first time, the requirement on channel reciprocity to activate uplink channel training, instead of downlink channel training, to achieve a higher data rate for the downlink transmission from a multi-antenna base station to a single-antenna user. We first derive novel closed-form expressions for the lower bounds on the data rates achieved by the two channel training strategies by considering the impact of finite blocklength. The performance comparison result of these two strategies is determined by the amount of channel reciprocity that is utilized in the uplink channel training. We then derive an approximated expression for the minimum channel reciprocity that enables the uplink channel training to outperform the downlink channel training. Through numerical results, we demonstrate that this minimum channel reciprocity decreases as the blocklength decreases or the number of transmit antennas increases, which shows the necessity and benefits of activating the uplink channel training for short-packet communications with multiple transmit antennas. This work provides pivotal and unprecedented guidelines on choosing channel training strategies and channel reciprocity calibrations, offering valuable insights into latency reduction in the Tactile Internet applications.Comment: 6 pages, 3 figures, Submitted to IEEE ICC 2018 Worksho

    Distributed interaction between computer virus and patch: A modeling study

    Full text link
    The decentralized patch distribution mechanism holds significant promise as an alternative to its centralized counterpart. For the purpose of accurately evaluating the performance of the decentralized patch distribution mechanism and based on the exact SIPS model that accurately captures the average dynamics of the interaction between viruses and patches, a new virus-patch interacting model, which is known as the generic SIPS model, is proposed. This model subsumes the linear SIPS model. The dynamics of the generic SIPS model is studied comprehensively. In particular, a set of criteria for the final extinction or/and long-term survival of viruses or/and patches are presented. Some conditions for the linear SIPS model to accurately capture the average dynamics of the virus-patch interaction are empirically found. As a consequence, the linear SIPS model can be adopted as a standard model for assessing the performance of the distributed patch distribution mechanism, provided the proper conditions are satisfied
    • …
    corecore