1,004 research outputs found
Low magnetic field reversal of electric polarization in a Y-type hexaferrite
Magnetoelectric multiferroics in which ferroelectricity and magnetism coexist
have attracted extensive attention because they provide great opportunities for
the mutual control of electric polarization by magnetic fields and
magnetization by electric fields. From a practical point view, the main
challenge in this field is to find proper multiferroic materials with a high
operating temperature and great magnetoelectric sensitivity. Here we report on
the magnetically tunable ferroelectricity and the giant magnetoelectric
sensitivity up to 250 K in a Y-type hexaferrite, BaSrCoZnFe11AlO22. Not only
the magnitude but also the sign of electric polarization can be effectively
controlled by applying low magnetic fields (a few hundreds of Oe) that modifies
the spiral magnetic structures. The magnetically induced ferroelectricity is
stabilized even in zero magnetic field. Decayless reproducible flipping of
electric polarization by oscillating low magnetic fields is shown. The maximum
linear magnetoelectric coefficient reaches a high value of ~ 3.0\times10^3 ps/m
at 200 K.Comment: 9 pages, 5 figures, a couple of errors are correcte
Free vibration studies of functionally graded magneto-electro-elastic plates/shells by using solid-shel ements
In this article, free vibration studies on functionally graded magneto-electro-elastic plates and cylindrical shells have been carried out by means of finite element method. The functionally graded material is assumed to be exponential in the thickness direction. The present finite element is formulated on the basis of assumed natural strain, enhanced assumed strain method and using displacement components, electric potential and magnetic potentials as nodal degrees of freedom. This element can be used as solid element and can also be applied to model thin curved shell structures. Numerical studies include the influence of the different exponential factor, magnetic and piezoelectric effect on the natural frequencies. Obtained numerical results are in good agreement with the semi-analytical finite element solutions available in the literature
Developmental differences in the structure of executive function in middle childhood and adolescence
Although it has been argued that the structure of executive function (EF) may change developmentally, there is little empirical research to examine this view in middle childhood and adolescence. The main objective of this study was to examine developmental changes in the component structure of EF in a large sample (N = 457) of 7–15 year olds. Participants completed batteries of tasks that measured three components of EF: updating working memory (UWM), inhibition, and shifting. Confirmatory factor analysis (CFA) was used to test five alternative models in 7–9 year olds, 10–12 year olds, and 13–15 year olds. The results of CFA showed that a single-factor EF model best explained EF performance in 7–9-year-old and 10–12-year-old groups, namely unitary EF, though this single factor explained different amounts of variance at these two ages. In contrast, a three-factor model that included UWM, inhibition, and shifting best accounted for the data from 13–15 year olds, namely diverse EF. In sum, during middle childhood, putative measures of UWM, inhibition, and shifting may rely on similar underlying cognitive processes. Importantly, our findings suggest that developmental dissociations in these three EF components do not emerge until children transition into adolescence. These findings provided empirical evidence for the development of EF structure which progressed from unity to diversity during middle childhood and adolescence
catena-Poly[[diazidomanganese(II)]bis[μ-1-(4-pyridylmethyl)-1H-benzimidazole]]
In the title polymeric compound, [Mn(N3)2(C13H11N3)2]n, each MnII centre is six-coordinated in an octahedral geometry by six N atoms from four 1-(4-pyridylmethyl)-1H-benzimidazole (L) ligands and two azide anions (N3
−). Each of the MnII ions lies on an inversion centre. The L ligands and N3
− anions bridge adjacent MnII centres, generating a polymeric chain running along the [110] direction. Adjacent polymeric chains are arranged in a two-dimensional network parallel to the (001) plane, linked by C—H⋯N hydrogen bonds
Electronic Structures of Graphene Layers on Metal Foil: Effect of Point Defects
Here we report a facile method to generate a high density of point defects in
graphene on metal foil and show how the point defects affect the electronic
structures of graphene layers. Our scanning tunneling microscopy (STM)
measurements, complemented by first principle calculations, reveal that the
point defects result in both the intervalley and intravalley scattering of
graphene. The Fermi velocity is reduced in the vicinity area of the defect due
to the enhanced scattering. Additionally, our analysis further points out that
periodic point defects can tailor the electronic properties of graphene by
introducing a significant bandgap, which opens an avenue towards all-graphene
electronics.Comment: 4 figure
SDSS J163459.82+204936.0: A Ringed Infrared-Luminous Quasar with Outflows in both Absorption and Emission Lines
SDSS J1634+2049 is a local (z = 0.1293) infrared-luminous quasar with LIR=
10^11.91 Lsun. We present a detailed multiwavelength study of both the host
galaxy and the nucleus. The host galaxy demonstrates violent, obscured star
formation activities with SFR ~ 140 Msun yr^-1, estimated from either the PAH
emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted
narrow cuspy component in Hb, HeI5876,10830 and other emission lines
consistently with an offset velocity of ~900 km/s, as well as additional
blueshifting phenomena in high-ionization lines , while there exist blueshifted
broad absorption lines (BALs) in NaID and HeI*3889,10830, indicative of the AGN
outflows producing BALs and emission lines. Constrained mutually by the several
BALs with CLOUDY, the physical properties of the absorption-line outflow are
derived as follows: 10^4 < n_H <= 10^5 cm^-3, 10^-1.3 <= U <= 10^-0.7 and
10^22.5<= N_H <= 10^22.9 cm^-2 , similar to those derived for the emission-line
outflows. The similarity suggests a common origin. Taking advantages of both
the absorption lines and outflowing emission lines, we find that the outflow
gas is located at a distance of 48 - 65 pc from the nucleus, and that the
kinetic luminosity of the outflow is 10^44-10^46 erg s^-1. J1634+2049 has a
off-centered galactic ring on the scale of ~ 30 kpc that is proved to be formed
by a recent head-on collision by a nearby galaxy. Thus this quasar is a
valuable object in the transitional phase emerging out of dust enshrouding as
depicted by the co-evolution scenario.Comment: 13 figures, 6 tables; accepted for publication in Ap
Work-Hardening and Deformation Mechanism of Cold Rolled Low Carbon Steel
Abstract: The study reports the mechanical property and microstructure of cold rolled low carbon steel and its work-hardening behavior in the deformation process. The tensile test in room temperature of low carbon steel was implemented for the different cold rolling deformation, the stress-strain curve was draught according to the relationship between strength and deformation and fitted for the polynomial fitting, the strain hardening exponent (n) of test steel was calculated by the Hollomon method. In the whole cold deformation process, the work-hardening of cold rolled steel is significant, work-hardening rate has different degrees decreasewith the deformation increase. The strain hardening exponent is simple and dislocation strengthening is the major cause of hardening processing. The microstructure of test steel was observed after different deformation, the room temperature organization is the ferrite and few pearlite. The original grain is equiaxial and the average grain size is about 23.5 um, and pearlite distributes in ferrite grain boundaries. It was consequently established the cold deformation energy according to dislocation model, the cold deformation energy is main concerned on the plastic deformation to resistance and the initial stress
Clinical and laboratory characteristics of systemic anaplastic large cell lymphoma in Chinese patients
Background: Systemic anaplastic large cell lymphoma (S-ALCL) is a rare disease with a highly variable prognosis and no standard chemotherapy regimen. Anaplastic lymphoma kinase (ALK) has been reported as an important prognostic factor correlated with S-ALCL in many but not all studies. In our study, we retrospectively analyzed 92 patients with S-ALCL from the Peking University Lymphoma Center for clinical and molecular prognostic factors to make clear the role of ALK and other prognostic factors in Han Chinese S-ALCL. Results: The majority of Chinese S-ALCL patients were young male patients (median age 26, male/female ratio 1.7) and the median age was younger than previous reports regardless of ALK expression status. The only statistically significant different clinical characteristic in S-ALCL between ALK positive (ALK(+)) and ALK negative (ALK(-)) was age, with a younger median age of 22 for ALK+ compared with 30 for ALK-. However, when pediatric patients (<= 18) were excluded, there was no age difference between ALK+ and ALK-. The groups did not differ in the proportion of males, those with clinical stage III/IV (49 vs 51%) or those with extranodal disease (53 vs 59%). Of 73 evaluable patients, the 3-year and 5-year survival rates were 60% and 47%, respectively. Univariate analysis showed that three factors: advanced stage III/IV, lack of expression of ALK, and high Ki-67 expression, were associated with treatment failure in patients with S-ALCL. However, ALK expression correlated with improved survival only in patients younger than 14 years, while not in adult patients. In multivariate analysis, only clinical stage was an independent prognostic factor for survival. Expressions of Wilms tumor 1 (WT1) and B-cell lymphoma 2 protein (BCL-2) correlated with the expression of ALK, but they did not have prognostic significance. High Ki-67 expression was also a poor prognostic factor. Conclusions: Our results show that ALK expression alone is not sufficient to determine the outcome of ALCL and other prognostic factors must be considered. Clinical stage is an independent prognostic factor. Ki-67 expression is a promising prognostic factor.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000307871100001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701OncologyHematologySCI(E)PubMed4ARTICLE38
Increase in neuroexcitability of unmyelinated C-type vagal ganglion neurons during initial postnatal development of visceral afferent reflex functions
BACKGROUND:
Baroreflex gain increase up closely to adult level during initial postnatal weeks, and any interruption within this period will increase the risk of cardiovascular problems in later of life span. We hypothesize that this short period after birth might be critical for postnatal development of vagal ganglion neurons (VGNs).
METHODS:
To evaluate neuroexcitability evidenced by discharge profiles and coordinate changes, ion currents were collected from identified A- and C-type VGNs at different developmental stages using whole-cell patch clamping.
RESULTS:
C-type VGNs underwent significant age-dependent transition from single action potential (AP) to repetitive discharge. The coordinate changes between TTX-S and TTX-R Na(+) currents were also confirmed and well simulated by computer modeling. Although 4-AP or iberiotoxin age dependently increased firing frequency, AP duration was prolonged in an opposite fashion, which paralleled well with postnatal changes in 4-AP- and iberiotoxin-sensitive K(+) current activity, whereas less developmental changes were verified in A-types.
CONCLUSION:
These data demonstrate for the first time that the neuroexcitability of C-type VGNs increases significantly compared with A-types within initial postnatal weeks evidenced by AP discharge profiles and coordinate ion channel changes, which explain, at least in part, that initial postnatal weeks may be crucial for ontogenesis in visceral afferent reflex function
- …