1,651 research outputs found
Determination of pentachlorophenol in wood and leachate from discarded treated wooden poles
Pentachlorophenol(PCP) has long been used as a preservative in the wood industry. The disposal of the used treated wood poles in landfill is of an environmental concern.
The study presented in this paper was designed to determine the leaching of pentachlorophenol from treated aged wood. An analytical method for HPLC determination of PCP was developed and validated to perform the analysis of pentachlorophenol in samples of the oringinal wood and leaching solutions.
Further studies involved the description of the PCP distribution in wood poles, the estimation of the leaching rate of PCP and the factors which influence the leaching rate of PCP
Deep Extreme Multi-label Learning
Extreme multi-label learning (XML) or classification has been a practical and
important problem since the boom of big data. The main challenge lies in the
exponential label space which involves possible label sets especially
when the label dimension is huge, e.g., in millions for Wikipedia labels.
This paper is motivated to better explore the label space by originally
establishing an explicit label graph. In the meanwhile, deep learning has been
widely studied and used in various classification problems including
multi-label classification, however it has not been properly introduced to XML,
where the label space can be as large as in millions. In this paper, we propose
a practical deep embedding method for extreme multi-label classification, which
harvests the ideas of non-linear embedding and graph priors-based label space
modeling simultaneously. Extensive experiments on public datasets for XML show
that our method performs competitive against state-of-the-art result
Modeling The Intensity Function Of Point Process Via Recurrent Neural Networks
Event sequence, asynchronously generated with random timestamp, is ubiquitous
among applications. The precise and arbitrary timestamp can carry important
clues about the underlying dynamics, and has lent the event data fundamentally
different from the time-series whereby series is indexed with fixed and equal
time interval. One expressive mathematical tool for modeling event is point
process. The intensity functions of many point processes involve two
components: the background and the effect by the history. Due to its inherent
spontaneousness, the background can be treated as a time series while the other
need to handle the history events. In this paper, we model the background by a
Recurrent Neural Network (RNN) with its units aligned with time series indexes
while the history effect is modeled by another RNN whose units are aligned with
asynchronous events to capture the long-range dynamics. The whole model with
event type and timestamp prediction output layers can be trained end-to-end.
Our approach takes an RNN perspective to point process, and models its
background and history effect. For utility, our method allows a black-box
treatment for modeling the intensity which is often a pre-defined parametric
form in point processes. Meanwhile end-to-end training opens the venue for
reusing existing rich techniques in deep network for point process modeling. We
apply our model to the predictive maintenance problem using a log dataset by
more than 1000 ATMs from a global bank headquartered in North America.Comment: Accepted at Thirty-First AAAI Conference on Artificial Intelligence
(AAAI17
Self-Supervised Deep Visual Odometry with Online Adaptation
Self-supervised VO methods have shown great success in jointly estimating
camera pose and depth from videos. However, like most data-driven methods,
existing VO networks suffer from a notable decrease in performance when
confronted with scenes different from the training data, which makes them
unsuitable for practical applications. In this paper, we propose an online
meta-learning algorithm to enable VO networks to continuously adapt to new
environments in a self-supervised manner. The proposed method utilizes
convolutional long short-term memory (convLSTM) to aggregate rich
spatial-temporal information in the past. The network is able to memorize and
learn from its past experience for better estimation and fast adaptation to the
current frame. When running VO in the open world, in order to deal with the
changing environment, we propose an online feature alignment method by aligning
feature distributions at different time. Our VO network is able to seamlessly
adapt to different environments. Extensive experiments on unseen outdoor
scenes, virtual to real world and outdoor to indoor environments demonstrate
that our method consistently outperforms state-of-the-art self-supervised VO
baselines considerably.Comment: Accepted by CVPR 2020 ora
- …