1,651 research outputs found

    Determination of pentachlorophenol in wood and leachate from discarded treated wooden poles

    Get PDF
    Pentachlorophenol(PCP) has long been used as a preservative in the wood industry. The disposal of the used treated wood poles in landfill is of an environmental concern. The study presented in this paper was designed to determine the leaching of pentachlorophenol from treated aged wood. An analytical method for HPLC determination of PCP was developed and validated to perform the analysis of pentachlorophenol in samples of the oringinal wood and leaching solutions. Further studies involved the description of the PCP distribution in wood poles, the estimation of the leaching rate of PCP and the factors which influence the leaching rate of PCP

    Deep Extreme Multi-label Learning

    Full text link
    Extreme multi-label learning (XML) or classification has been a practical and important problem since the boom of big data. The main challenge lies in the exponential label space which involves 2L2^L possible label sets especially when the label dimension LL is huge, e.g., in millions for Wikipedia labels. This paper is motivated to better explore the label space by originally establishing an explicit label graph. In the meanwhile, deep learning has been widely studied and used in various classification problems including multi-label classification, however it has not been properly introduced to XML, where the label space can be as large as in millions. In this paper, we propose a practical deep embedding method for extreme multi-label classification, which harvests the ideas of non-linear embedding and graph priors-based label space modeling simultaneously. Extensive experiments on public datasets for XML show that our method performs competitive against state-of-the-art result

    Modeling The Intensity Function Of Point Process Via Recurrent Neural Networks

    Full text link
    Event sequence, asynchronously generated with random timestamp, is ubiquitous among applications. The precise and arbitrary timestamp can carry important clues about the underlying dynamics, and has lent the event data fundamentally different from the time-series whereby series is indexed with fixed and equal time interval. One expressive mathematical tool for modeling event is point process. The intensity functions of many point processes involve two components: the background and the effect by the history. Due to its inherent spontaneousness, the background can be treated as a time series while the other need to handle the history events. In this paper, we model the background by a Recurrent Neural Network (RNN) with its units aligned with time series indexes while the history effect is modeled by another RNN whose units are aligned with asynchronous events to capture the long-range dynamics. The whole model with event type and timestamp prediction output layers can be trained end-to-end. Our approach takes an RNN perspective to point process, and models its background and history effect. For utility, our method allows a black-box treatment for modeling the intensity which is often a pre-defined parametric form in point processes. Meanwhile end-to-end training opens the venue for reusing existing rich techniques in deep network for point process modeling. We apply our model to the predictive maintenance problem using a log dataset by more than 1000 ATMs from a global bank headquartered in North America.Comment: Accepted at Thirty-First AAAI Conference on Artificial Intelligence (AAAI17

    Self-Supervised Deep Visual Odometry with Online Adaptation

    Full text link
    Self-supervised VO methods have shown great success in jointly estimating camera pose and depth from videos. However, like most data-driven methods, existing VO networks suffer from a notable decrease in performance when confronted with scenes different from the training data, which makes them unsuitable for practical applications. In this paper, we propose an online meta-learning algorithm to enable VO networks to continuously adapt to new environments in a self-supervised manner. The proposed method utilizes convolutional long short-term memory (convLSTM) to aggregate rich spatial-temporal information in the past. The network is able to memorize and learn from its past experience for better estimation and fast adaptation to the current frame. When running VO in the open world, in order to deal with the changing environment, we propose an online feature alignment method by aligning feature distributions at different time. Our VO network is able to seamlessly adapt to different environments. Extensive experiments on unseen outdoor scenes, virtual to real world and outdoor to indoor environments demonstrate that our method consistently outperforms state-of-the-art self-supervised VO baselines considerably.Comment: Accepted by CVPR 2020 ora
    • …
    corecore