42,508 research outputs found
Two-Loop Four-Gluon Amplitudes in N=4 Super-Yang-Mills
Using cutting techniques we obtain the two-loop N=4 super-Yang-Mills helicity
amplitudes for four-gluon scattering in terms of scalar integral functions. The
N=4 amplitudes are considerably simpler than corresponding QCD amplitudes and
therefore provide a testing ground for exploring two-loop amplitudes. The
amplitudes are constructed directly in terms of gauge invariant quantities and
therefore remain relatively compact throughout the calculation. We also present
a conjecture for the leading color four-gluon amplitudes to all orders in the
perturbative expansion.Comment: Latex, 13 pages, 9 figures, minor changes to signs in eq.(14
A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal CdReO
Strong electron interactions can drive metallic systems toward a variety of
well-known symmetry-broken phases, but the instabilities of correlated metals
with strong spin-orbit coupling have only recently begun to be explored. We
uncovered a multipolar nematic phase of matter in the metallic pyrochlore
CdReO using spatially resolved second-harmonic optical anisotropy
measurements. Like previously discovered electronic nematic phases, this
multipolar phase spontaneously breaks rotational symmetry while preserving
translational invariance. However, it has the distinguishing property of being
odd under spatial inversion, which is allowed only in the presence of
spin-orbit coupling. By examining the critical behavior of the multipolar
nematic order parameter, we show that it drives the thermal phase transition
near 200 kelvin in CdReO and induces a parity-breaking lattice
distortion as a secondary order.Comment: 9 pages main text, 4 figures, 10 pages supplementary informatio
Multiobjective Optimization Problem of Multireservoir System in Semiarid Areas
With the increasing scarcity of water resources, the growing importance of the optimization operation of the multireservoir system in water resources development, utilization, and management is increasingly evident. Some of the existing optimization methods are inadequate in applicability and effectiveness. Therefore, we need further research in how to enhance the applicability and effectiveness of the algorithm. On the basis of the research of the multireservoir system’s operating parameters in the Urumqi River basin, we establish a multiobjective optimization problem (MOP) model of water resources development, which meets the requirements of water resources development. In the mathematical model, the domestic water consumption is the biggest, the production of industry and agricultural is the largest, the gross output value of industry and agricultural is the highest, and the investment of the water development is the minimum. We use the weighted variable-step shuffled frog leaping algorithm (SFLA) to resolve it, which satisfies the constraints. Through establishing the test function and performance metrics, we deduce the evolutionary algorithms, which suit for solving MOP of the scheduling, and realize the multiobjective optimization of the multireservoir system. After that, using the fuzzy theory, we convert the competitive multiobjective function into single objective problem of maximum satisfaction, which is the only solution. A feasible solution is provided to resolve the multiobjective scheduling optimization of multireservoir system in the Urumqi River basin. It is the significance of the layout of production, the regional protection of ecological environment, and the sufficient and rational use of natural resources, in Urumqi and the surrounding areas
- …