48,601 research outputs found
A First Experimental Limit on In-matter Torsion from Neutron Spin Rotation in Liquid He-4
We report the first experimental upper bound to our knowledge on possible
in-matter torsion interactions of the neutron from a recent search for parity
violation in neutron spin rotation in liquid He-4. Our experiment constrains a
coefficient consisting of a linear combination of parameters involving
the time components of the torsion fields and from the nucleons
and electrons in helium which violates parity. We report an upper bound of
GeV at 68% confidence level and indicate other physical
processes that could be analyzed to constrain in-matter torsion.Comment: 12 pages, typo correcte
Theoretical investigation of the dynamic electronic response of a quantum dot driven by time-dependent voltage
We present a comprehensive theoretical investigation on the dynamic
electronic response of a noninteracting quantum dot system to various forms of
time-dependent voltage applied to the single contact lead. Numerical
simulations are carried out by implementing a recently developed hierarchical
equations of motion formalism [J. Chem. Phys. 128, 234703 (2008)], which is
formally exact for a fermionic system interacting with grand canonical
fermionic reservoirs, in the presence of arbitrary time-dependent applied
chemical potentials. The dynamical characteristics of the transient transport
current evaluated in both linear and nonlinear response regimes are analyzed,
and the equivalent classic circuit corresponding to the coupled dot-lead system
is also discussed
One Dimensional ary Density Classification Using Two Cellular Automaton Rules
Suppose each site on a one-dimensional chain with periodic boundary condition
may take on any one of the states , can you find out the most
frequently occurring state using cellular automaton? Here, we prove that while
the above density classification task cannot be resolved by a single cellular
automaton, this task can be performed efficiently by applying two cellular
automaton rules in succession.Comment: Revtex, 4 pages, uses amsfont
Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach
A quantum dissipation theory is formulated in terms of hierarchically coupled
equations of motion for an arbitrary electronic system coupled with grand
canonical Fermion bath ensembles. The theoretical construction starts with the
second--quantization influence functional in path integral formalism, in which
the Fermion creation and annihilation operators are represented by Grassmann
variables. Time--derivatives on influence functionals are then performed in a
hierarchical manner, on the basis of calculus--on--path--integral algorithm.
Both the multiple--frequency--dispersion and the non-Markovian reservoir
parametrization schemes are considered for the desired hierarchy construction.
The resulting formalism is in principle exact, applicable to interacting
systems, with arbitrary time-dependent external fields. It renders an exact
tool to evaluate various transient and stationary quantum transport properties
of many-electron systems. At the second--tier truncation level the present
theory recovers the real--time diagrammatic formalism developed by Sch\"{o}n
and coworkers. For a single-particle system, the hierarchical formalism
terminates at the second tier exactly, and the Landuer--B\"{u}ttiker's
transport current expression is readily recovered.Comment: The new versio
Finding The Sign Of A Function Value By Binary Cellular Automaton
Given a continuous function , suppose that the sign of only has
finitely many discontinuous points in the interval . We show how to use
a sequence of one dimensional deterministic binary cellular automata to
determine the sign of where is the (number) density of 1s in
an arbitrarily given bit string of finite length provided that satisfies
certain technical conditions.Comment: Revtex, uses amsfonts, 10 page
Localized gap soliton trains of Bose-Einstein condensates in an optical lattice
We develop a systematic analytical approach to study the linear and nonlinear
solitary excitations of quasi-one-dimensional Bose-Einstein condensates trapped
in an optical lattice. For the linear case, the Bloch wave in the energy
band is a linear superposition of Mathieu's functions and ;
and the Bloch wave in the band gap is a linear superposition of
and . For the nonlinear case, only solitons inside the band gaps are
likely to be generated and there are two types of solitons -- fundamental
solitons (which is a localized and stable state) and sub-fundamental solitons
(which is a lacalized but unstable state). In addition, we find that the
pinning position and the amplitude of the fundamental soliton in the lattice
can be controlled by adjusting both the lattice depth and spacing. Our
numerical results on fundamental solitons are in quantitative agreement with
those of the experimental observation [Phys. Rev. Lett. {\bf92}, 230401
(2004)]. Furthermore, we predict that a localized gap soliton train consisting
of several fundamental solitons can be realized by increasing the length of the
condensate in currently experimental conditions.Comment: 9 pages, 6 figures, accepted for publicaiton in PR
- …