32,786 research outputs found

    Time–Frequency Cepstral Features and Heteroscedastic Linear Discriminant Analysis for Language Recognition

    Get PDF
    The shifted delta cepstrum (SDC) is a widely used feature extraction for language recognition (LRE). With a high context width due to incorporation of multiple frames, SDC outperforms traditional delta and acceleration feature vectors. However, it also introduces correlation into the concatenated feature vector, which increases redundancy and may degrade the performance of backend classifiers. In this paper, we first propose a time-frequency cepstral (TFC) feature vector, which is obtained by performing a temporal discrete cosine transform (DCT) on the cepstrum matrix and selecting the transformed elements in a zigzag scan order. Beyond this, we increase discriminability through a heteroscedastic linear discriminant analysis (HLDA) on the full cepstrum matrix. By utilizing block diagonal matrix constraints, the large HLDA problem is then reduced to several smaller HLDA problems, creating a block diagonal HLDA (BDHLDA) algorithm which has much lower computational complexity. The BDHLDA method is finally extended to the GMM domain, using the simpler TFC features during re-estimation to provide significantly improved computation speed. Experiments on NIST 2003 and 2007 LRE evaluation corpora show that TFC is more effective than SDC, and that the GMM-based BDHLDA results in lower equal error rate (EER) and minimum average cost (Cavg) than either TFC or SDC approaches

    Efficient Inexact Proximal Gradient Algorithm for Nonconvex Problems

    Full text link
    The proximal gradient algorithm has been popularly used for convex optimization. Recently, it has also been extended for nonconvex problems, and the current state-of-the-art is the nonmonotone accelerated proximal gradient algorithm. However, it typically requires two exact proximal steps in each iteration, and can be inefficient when the proximal step is expensive. In this paper, we propose an efficient proximal gradient algorithm that requires only one inexact (and thus less expensive) proximal step in each iteration. Convergence to a critical point %of the nonconvex problem is still guaranteed and has a O(1/k)O(1/k) convergence rate, which is the best rate for nonconvex problems with first-order methods. Experiments on a number of problems demonstrate that the proposed algorithm has comparable performance as the state-of-the-art, but is much faster

    Effect of secondary currents on the flow and turbulence in partially filled pipes

    Get PDF
    Large-eddy simulations of turbulent flow in partially filled pipes are conducted to investigate the effect of secondary currents on the friction factor, first- and second-order statistics and large-scale turbulent motion. The method is validated first and simulated profiles of the mean streamwise velocity, normal stresses and turbulent kinetic energy (TKE) are shown to be in good agreement with experimental data. The secondary flow is stronger in half- and three-quarters full pipes compared with quarter full or fully filled pipe flows, respectively. The origin of the secondary flow is examined by both the TKE budget and the steamwise vorticity equation, providing evidence that secondary currents originate from the corner between the free surface and the pipe walls, which is where turbulence production is larger than the sum of the remaining terms of the TKE budget. An extra source of streamwise vorticity production is found at the free surface near the centreline bisector, due to the two-component asymmetric turbulence there. The occurrence of dispersive stresses (due to secondary currents) reduces the contribution of the turbulent shear stress to the friction factor, which results in a reduction of the total friction factor of flows in half and three-quarters full pipes in comparison to a fully filled pipe flow. Furthermore, the presence of significant secondary currents inhibits very-large-scale motion (VLSM), which in turn reduces the strength and scales of near-wall streaks. Subsequently, near-wall coherent structures generated by streak instability and transient growth are significantly suppressed. The absence of VLSM and less coherent near-wall turbulence structures is supposedly responsible for the drag reduction in partially filled pipe flows relative to a fully filled pipe flow at an equivalent Reynolds number

    J/psi Elliptic Flow, High pT Suppression and Upsilon Measurements in A+A Collisions by the PHENIX Experiment

    Full text link
    Three measurements that broaden the scope of the experimental investigation of quarkonia modifications in heavy ion collisions are presented. Although the current statistical precision on the first two measurements does not allow one to draw significant conclusions, J/ψ\psi elliptic flow and high pT suppression results are important proofs of principle measurements, and make the case for higher luminosities at RHIC. Finally, the first measurement of an upper limit on the nuclear modification R_AA of dielectrons in the Υ\Upsilon mass region in Au+Au collisions is presented. The results show a significant suppression with an upper limit of 0.64 at 90% CL.Comment: 4 pages, 3 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Probabilistic teleportation of unknown two-particle state via POVM

    Full text link
    We propose a scheme for probabilistic teleportation of unknown two-particle state with partly entangled four-particle state via POVM. In this scheme the teleportation of unknown two-particle state can be realized with certain probability by performing two Bell state measurements, a proper POVM and a unitary transformation.Comment: 5 pages, no figur
    • …
    corecore